本文已被:浏览 1011次 下载 513次
投稿时间:1994-08-29
投稿时间:1994-08-29
中文摘要: 在科学计算中多级方法是我们熟知的,且在研究中经常与多格或区域分解法有关.此外,还可以利用惯性流形作为发展问题的物理意义更为密切相关的一种不同类型的多级方法,主要用于非线性耗散方程. 起源于利用惯性流形的新的多级方法,目前已经引入的有增加未知量法(Incremental Unknown Meth-od)和非线性伽辽金法;这些方法适用于对演化进行长时间积分.本文的目的是介绍这些方法及用这些算法进行数值分析所得到的一些新的结果.
Abstract:Mnltilevel methods are well known in scientific computation and much studied in relation with multigrid or domain decomposition methods. The utilization of inertial manigolds in scientific computation opens a way for the development of a different type of multilevel methods more closely related to the physics of problems, with an emphasis on nonlinear dissipative evolution equations. The new multilevel methods stemming from the utilization of inertial manifolds which have been introduced so far include the incremental unknown quantity method and the noulinear unknown quantity method; these methods are adapted to the large time integration of evolution equations. Our aim in this article is to present these methods and the new results concerning the numerical analysis of these algorithms.
keywords: nertial manifolds multilevel methods incremental unknown quantity method nonlinear galerkin method parallel computation
文章编号:19950103 中图分类号: 文献标志码:
基金项目:
Author Name | Affiliation |
Chen Fengsu | Shanghai Institute of Electric Power |
Cai Wenkang | Shanghai Institute of Electric Power |
Cheng Weisheng | Wuhan University of Hydraulic and Electric Engineering |
引用文本:
陈奉苏,蔡文康,程卫生.惯性流形应用于科学计算[J].上海电力大学学报,1995,11(1):15-24.
Chen Fengsu,Cai Wenkang,Cheng Weisheng.Applications of Inertial Manifolds to Scientific Computation[J].Journal of Shanghai University of Electric Power,1995,11(1):15-24.
陈奉苏,蔡文康,程卫生.惯性流形应用于科学计算[J].上海电力大学学报,1995,11(1):15-24.
Chen Fengsu,Cai Wenkang,Cheng Weisheng.Applications of Inertial Manifolds to Scientific Computation[J].Journal of Shanghai University of Electric Power,1995,11(1):15-24.