本文已被:浏览 963次 下载 358次
投稿时间:1998-06-17
投稿时间:1998-06-17
中文摘要: 对完备非紧而形上的Laplacian本性谱进行了讨论,即若M是一个完备非紧流形,假设M有一个中心S,使得exps:NS→M是一个微分同胚(如果dimS=0,我们假定S是M的极).如果M的径向截曲率在M-S上,其绝对值满足一定条件,那么σ(-△)=σess(-△)=[0,∞).
Abstract:This paper is about the Laplacian essential spectrum of a complete noncompact Riemannian manifold, i.e. Let M be a complete noncompact manifold with a soul S suth that exp S":NS~M is a diffeomorphism (if dim S"=0,
we assume S‘1S a pole of M.If the absolute value of the radial sectional curvatures satisfies some condi-dons on M-S‘,Q(-△)=ergs(-△)=[0,∞)
keywords: soul essential spectrum radial sectional curvature
文章编号:19980403 中图分类号: 文献标志码:
基金项目:
Author Name | Affiliation |
Zhou Zhaohui | |
Chen Zhihua |
引用文本:
周朝晖,陈志华.完备非紧流形上的Laplacian本性谱[J].上海电力大学学报,1998,14(4):17-20.
Zhou Zhaohui,Chen Zhihua.Laplacian Essential Spectrum of a Complete Noncompact Riemannian Manifold[J].Journal of Shanghai University of Electric Power,1998,14(4):17-20.
周朝晖,陈志华.完备非紧流形上的Laplacian本性谱[J].上海电力大学学报,1998,14(4):17-20.
Zhou Zhaohui,Chen Zhihua.Laplacian Essential Spectrum of a Complete Noncompact Riemannian Manifold[J].Journal of Shanghai University of Electric Power,1998,14(4):17-20.