本文已被:浏览 1055次 下载 522次
投稿时间:1999-09-14
投稿时间:1999-09-14
中文摘要: 介绍了将人工神经网络自组织特征映射模型———KOHONEN网络运用到电厂送风机故障诊断的思路和方法,并进一步讨论了影响诊断系统可靠性和聚类能力的主要因素,如隶属度函数和模型中参数的设置等,分析结果表明:该诊断系统具有很高的可靠性和较强的聚类能力
Abstract:This paper introduces a method, using the KOHONEN self-organization reflection model of the artificial neural network system, to diagnose the faults of feed fans in the power plants, and also analyzes the primary factors that affect the reliability and assembility of the fault diagnosis system.The result shows that the diagnosis system has a high reliability and strong assembility.
文章编号:20010408 中图分类号: 文献标志码:
基金项目:
引用文本:
何明,周莹清,叶文勇,等.人工神经网络故障诊断系统可靠性和聚类能力的分析[J].上海电力大学学报,2001,17(4):37-42.
HE Ming,ZHOU Ying qing,YE Wen yong,et al.Analysis of Reliability and Assembility of Artificial Neural Network Fault Diagnosis System[J].Journal of Shanghai University of Electric Power,2001,17(4):37-42.
何明,周莹清,叶文勇,等.人工神经网络故障诊断系统可靠性和聚类能力的分析[J].上海电力大学学报,2001,17(4):37-42.
HE Ming,ZHOU Ying qing,YE Wen yong,et al.Analysis of Reliability and Assembility of Artificial Neural Network Fault Diagnosis System[J].Journal of Shanghai University of Electric Power,2001,17(4):37-42.