本文已被:浏览 840次 下载 489次
投稿时间:2002-02-26
投稿时间:2002-02-26
中文摘要: 在文献[1]的基础上, 通过引进网格等距度对反应 扩散型方程组进行了数值求解方法的讨论, 在网距度α≥2时, 证明了差分格式的一致收敛性, 其收敛阶为O(h+Δt).
Abstract:This paper concerns the numerical approach to reaction-diffusion equations on the basis of [1].In order to ensure the precision of the numerical solution, we choose mesh {hi}such that there are several mesh points and Green's function the difference scheme is established.We prove if the feasible equidistant degree α≥2, the scheme convergence in norm with speed O(h+Δt)uniformly
keywords: small parameter reaction-diffusion equations mesh equidistant degree discrete Green function methods difference scheme
文章编号:20030109 中图分类号: 文献标志码:
基金项目:
Author Name | Affiliation |
LI Kang-di | Shanghai University of Electric Power, Shanghai 200090, China |
ZHOU Ya-hong | HongKong University of Science and Technology, HongKong, China |
引用文本:
李康弟,周亚虹.一类带小参数反应-扩散型方程组的数值求解方法[J].上海电力大学学报,2003,19(1):42-46.
LI Kang-di,ZHOU Ya-hong.Numerical Approach to Reaction-diffusion Equations with Small Parameter[J].Journal of Shanghai University of Electric Power,2003,19(1):42-46.
李康弟,周亚虹.一类带小参数反应-扩散型方程组的数值求解方法[J].上海电力大学学报,2003,19(1):42-46.
LI Kang-di,ZHOU Ya-hong.Numerical Approach to Reaction-diffusion Equations with Small Parameter[J].Journal of Shanghai University of Electric Power,2003,19(1):42-46.