###
DOI:
上海电力大学学报:2005,21(1):51-54
本文二维码信息
码上扫一扫!
基于高阶神经元网络的晶闸管整流电路故障诊断
(1.上海电力学院 人工智能与应用研究所, 上海, 200090;2.上海大学 机电工程与自动化学院, 上海, 200072;3.上海市电力公司调度通信中心, 上海, 200025;4.日本国古河电工株式会社)
The Trouble Diagnosis of Thyristor Rectification Circuit Based on Higher Order Neural Network
(1.Artificial Intelligence Institute, Shanghai University of Electric Power, Shanghai 200090, China;2.School of Mechatronics Engineering and Automation, Shanghai University, Shanghai 200072, China;3.Shanghai Municipal Electric Power Company Load Dispatch and Communication Center, Shanghai 200025, China;4.Furukawa Electric Limited Company, Japan)
摘要
图/表
参考文献
本刊相似文献
All Journals 相似文献
All Journals 引证文献
本文已被:浏览 734次   下载 419
投稿时间:2004-11-19    
中文摘要: 介绍了人工神经元网络在晶闸管三相桥式整流电路故障诊断中的应用.较详细地介绍了高阶BP算法及其与普通BP算法的差异.电力系统故障诊断的计算机仿真表明,高阶BP算法可以明显提高系统精度,降低误差.
Abstract:An algorithm about ‘The Trouble Diagnosis of Thyristor Rectification Circuit Based on Higher Order Neural Network’ is introduced. This paper introduces a high-order BP algorithms in detail and the difference between high-order BP algorithms and ordinary BP algorithm. The Numerical simulations show that high-order BP can improve system precision,reduce error remarkably.
文章编号:20050112     中图分类号:    文献标志码:
基金项目:上海市教委自然科学一般项目资助(04LB09).
引用文本:
马立新,王仁峰,王尔玺,等.基于高阶神经元网络的晶闸管整流电路故障诊断[J].上海电力大学学报,2005,21(1):51-54.
MA Li-xin,WANG Ren-feng,WANG Er-xi,et al.The Trouble Diagnosis of Thyristor Rectification Circuit Based on Higher Order Neural Network[J].Journal of Shanghai University of Electric Power,2005,21(1):51-54.