本文已被:浏览 970次 下载 525次
投稿时间:2006-04-17
投稿时间:2006-04-17
中文摘要: 对样本点为N=2γ的离散傅里叶变换,按照库利-图基按时间抽取的方法,得到一组等价的迭代方程,对方程中对偶结点对的性质作了详细分析,由此简化了方程中的计算公式.与直接计算相比,大大减少了运算次数,并且计算过程中除了N个初始数据所占的存储单元外,不需再设置其他存储单元.
Abstract:According to Cooley-Tukey decimation in time,a set of equivalent iteration equations can be obtained in regard to the discrete Fourier transorm of the sample point N=2γ. Elaborate analysis on characteristics of the dual node pairs in the equation thereout simplifies its calculational formula.In comparison with direct operation,this method greatly reduces its degree of operation.Besides,no more settings are needed on storage cells except those occupied by N times initial data in the calculation process.
文章编号:20060224 中图分类号: 文献标志码:
基金项目:
作者 | 单位 |
曹伟丽 | 上海理工大学 理学院, 上海 200093 |
Author Name | Affiliation |
CAO Wei-li | Institute of Science, University of Shanghai for Science and Technology, Shanghai 200093, China |
引用文本:
曹伟丽.快速傅里叶变换的原理与方法[J].上海电力大学学报,2006,22(2):192-194.
CAO Wei-li.Principle and Methodology of the Fast Fourier Transform[J].Journal of Shanghai University of Electric Power,2006,22(2):192-194.
曹伟丽.快速傅里叶变换的原理与方法[J].上海电力大学学报,2006,22(2):192-194.
CAO Wei-li.Principle and Methodology of the Fast Fourier Transform[J].Journal of Shanghai University of Electric Power,2006,22(2):192-194.