###
DOI:
上海电力大学学报:2010,26(1):69-74
本文二维码信息
码上扫一扫!
磁流变阻尼器的神经网络建模及应用
(1. 上海电力学院能源与环境工程学院, 上海 200090;2.
2. 上海电力学院计算机与信息工程学院, 上海 200090)
The Neural Network Modeling of MR Dampers and Application
摘要
图/表
参考文献
本刊相似文献
All Journals 相似文献
All Journals 引证文献
本文已被:浏览 1017次   下载 843
投稿时间:2009-06-30    
中文摘要: 对非线性的磁流变阻尼器进行建模,建立单个磁流变阻尼器的神经网络正模型和神经网络逆模型,设计了两种四磁流变阻尼器的神经网络逆模型,通过两层控制策略将它们应用于汽车半主动悬架控制.结果表明:第1种神经网络逆模型对簧载质量的垂直加速度、俯仰角加速度和侧倾角加速度具有较好的控制效果,可有效改善车辆的行驶平顺性和操纵稳定性;第2种神经网络逆模型还有待改善.
Abstract:In order to model the nonlinear MR damper,the neural network models for the direct model and the inverse model of a single MR damper are created respectively. On this basis,two different recurrent neural network (RNN) inverse models for four MR dampers are designed and applied to the control of the semi-active suspension of the full-vehicle model. The simulation results demonstrate that the first RNN inverse model can greatly reduce the vertical acceleration and pitch angular acceleration and roll angular acceleration of the sprung-mass so that the ride comfort and handling of the semi-active suspension can be dramatically improved. However,there is still room for improvement for the second RNN inverse model.
文章编号:20100118     中图分类号:    文献标志码:
基金项目:上海电力学院科研基金引进人才项目(K2008-47).
引用文本:
王昊,史小梅.磁流变阻尼器的神经网络建模及应用[J].上海电力大学学报,2010,26(1):69-74.
WANG Haoa,SHI Xiao-meib.The Neural Network Modeling of MR Dampers and Application[J].Journal of Shanghai University of Electric Power,2010,26(1):69-74.