本文已被:浏览 919次 下载 462次
投稿时间:2009-01-12
投稿时间:2009-01-12
中文摘要: 提出了基于改进的BP神经网络的方法,并引入附加动量项和自适应学习率,根据所提的建模方法进行实际建模.计算结果表明,该模型能够较好地对床温进行预测,可以反映主要参数变化时循环流化床锅炉床温的动态特性,说明了该建模方法的可行性.
Abstract:A model of improved neural networks is proposed,which has the ability to characterize such complex systems.The process of dynamic modeling for bed temperature system of CFB boiler is displayed.The results shows that the performance of this model is capable of predicting the bed temperature of the CFB,and the proposed new strategy is feasible and effective.
文章编号:20100405 中图分类号: 文献标志码:
基金项目:上海高校选拔培养优秀青年教师科研专项基金(Z-2006-74)
作者 | 单位 | |
王渡 | 上海电力学院 能源与环境工程学院, 上海 200090 | wangdu2003@sina.com |
陈佳 | 浙江省天正设计工程有限公司, 浙江 杭州 310012 | |
李嘉 | 宝山钢铁股份有限公司电厂, 上海 201900 |
引用文本:
王渡,陈佳,李嘉.基于改进的神经网络循环流化床锅炉建模[J].上海电力大学学报,2010,26(4):327-330.
WANG Du,CHEN Jia,LI Jia.Modeling of Circulating Fluidized Bed Boiler Based on Neural Network[J].Journal of Shanghai University of Electric Power,2010,26(4):327-330.
王渡,陈佳,李嘉.基于改进的神经网络循环流化床锅炉建模[J].上海电力大学学报,2010,26(4):327-330.
WANG Du,CHEN Jia,LI Jia.Modeling of Circulating Fluidized Bed Boiler Based on Neural Network[J].Journal of Shanghai University of Electric Power,2010,26(4):327-330.