###
DOI:
上海电力大学学报:2011,27(2):171-175
本文二维码信息
码上扫一扫!
基于相关向量机的物体识别
(1.上海电力学院计算机与信息工程学院 上海 200090;2.同济大学电子与信息工程学院)
Object Identification Based on Relevance Vector Machine
(1.School of Computer and Information Engineering, Shanghai University of Electric Power, Shanghai 200090, China;2.School of Electronic and Information Engineering, Tongji University, Shanghai 200092, China)
摘要
图/表
参考文献
本刊相似文献
All Journals 相似文献
All Journals 引证文献
本文已被:浏览 1077次   下载 553
投稿时间:2010-07-12    
中文摘要: 探讨了相关向量机的分类原理及其在物体识别中的应用,其核函数无需满足mercer条件,且不需要误差参数的实验调整。提出了一种基于物体显著区域的特征描述方法,在有效提取物体特征的同时,大大减少了描述物体的特征量。实验结果表明,相关向量机不仅具有与支持向量机相同的性能,而且其相关向量较少,并取得了较好的识别效果。
Abstract:Both classification principle and application for object identification of the Relevance Vector Machine (RVM) are discussed.The RVM doesn't necessitate the estimate of a trade-off parameter and the satisfaction of the Mercer kernel functions. Anovel object descriptor based on salience field is proposed, which reduces the quantity of features for object discription.Experiment results demonstrate that the RVM achieves comparable recognition accuracy to SVM with substantially fewer vectors, and produces promising results for object identification.
文章编号:20110216     中图分类号:    文献标志码:
基金项目:
引用文本:
邵洁,董楠.基于相关向量机的物体识别[J].上海电力大学学报,2011,27(2):171-175.
SHAO Jie,DONG Nan.Object Identification Based on Relevance Vector Machine[J].Journal of Shanghai University of Electric Power,2011,27(2):171-175.