本文已被:浏览 1573次 下载 636次
投稿时间:2012-03-27
投稿时间:2012-03-27
中文摘要: 支持向量机(SVM)是基于结构风险最小化原理的机器学习技术,在解决小样本、非线性和高维的机器学习问题中表现出许多特有的优势,适用于函数预测、模式识别和数据分类领域.该算法在火电厂运行优化、清洁生产、故障诊断等方面均有应用,参数预测精度能够满足工程应用,为火电厂的节能优化和故障诊断提供一个新的研究方向.
Abstract:Support Vector Machine(SVM) is a machine learning technique demonstrating many peculiar advantages in solving machine learning problems of small sample,nonlinear and high dimensional.It is applicable to the field of function prediction,pattern recognition and data classification.The algorithm is applied to operation optimization,clean production,and fault diagnosis in thermal power plant,and its parameter prediction accuracy can satisfy the engineering applications,and thns provides a new research direction for the thermal power plant operation optimization and fault diagnosis.
文章编号:20130102 中图分类号: 文献标志码:
基金项目:上海市教育委员会重点学科(J51304)
作者 | 单位 | |
潘秉超 | 上海电力学院能源与机械工程学院 | pbc;2014@163.com |
王文欢 | 上海电力学院能源与机械工程学院 | |
潘卫国 | 上海电力学院能源与机械工程学院 | |
何明福 | 上海电力学院能源与机械工程学院 |
引用文本:
潘秉超,王文欢,潘卫国,等.支持向量机算法在电厂中的应用[J].上海电力大学学报,2013,29(1):5-8.
PAN Bingchao,WANG Wenhuan,PAN Weiguo,et al.Application Research of Power Plant Based on Support Vector Machine Algorithm[J].Journal of Shanghai University of Electric Power,2013,29(1):5-8.
潘秉超,王文欢,潘卫国,等.支持向量机算法在电厂中的应用[J].上海电力大学学报,2013,29(1):5-8.
PAN Bingchao,WANG Wenhuan,PAN Weiguo,et al.Application Research of Power Plant Based on Support Vector Machine Algorithm[J].Journal of Shanghai University of Electric Power,2013,29(1):5-8.