###
DOI:
上海电力大学学报:2013,29(6):527-531
本文二维码信息
码上扫一扫!
基于灰色理论和神经网络的短期电力负荷预测
(1.上海电力学院电力与自动化工程学院,上海 200090;2.金山供电公司电力调度部门,上海 200540)
Short-term Load Forecasting Based on Gray Theory and Neural Network
(1.School of Electric Power and Automation Engineer, Shanghai University of Electric Power;2.Dispatch Department, Jinshan Power Supply Company)
摘要
图/表
参考文献
本刊相似文献
All Journals 相似文献
All Journals 引证文献
本文已被:浏览 1255次   下载 498
投稿时间:2013-10-10    
中文摘要: 利用灰色理论中累加生成方法能够削弱负荷中随机成分的特点,以及人工神经网络可以逼近任意函数的能力,对具有任意变化规律的数据序列进行拟合和预测.实验结果表明,基于灰色理论和神经网络的最优组合模型的平均相对误差为1.307%,比BP神经网络预测和灰色理论模型预测的精度更高,具有明显优势.
中文关键词: BP神经网络  灰色理论  负荷预测
Abstract:The accumulated generating method of gray theory can weaken the random ingredients of the load,and artificial neural networks can be adjacent to any function,a sequence which changes arbitrarily is fitted and forecasted.The experimental results show that the average relative error based on gray theory and neural network model for the optimal combination is1.307%,and this method has obvious advantages in forecast precision over BP neural network forecast and gray theory model forecast.
文章编号:20130604     中图分类号:    文献标志码:
基金项目:上海市教育委员会创新基金(11YZ192)
引用文本:
陈帅,王勇,吕丰,等.基于灰色理论和神经网络的短期电力负荷预测[J].上海电力大学学报,2013,29(6):527-531.
CHEN Shuai,WANG Yong,LYU Feng,et al.Short-term Load Forecasting Based on Gray Theory and Neural Network[J].Journal of Shanghai University of Electric Power,2013,29(6):527-531.