本文已被:浏览 1002次 下载 576次
投稿时间:2014-03-03
投稿时间:2014-03-03
中文摘要: 研究了交换环的直积R1×R2的零因子图.对于交换环R1和R2,讨论了零因子图Γ(R1×R2)的直径与围长,分别确定了当图Γ(R1×R2)的直径为1,2,3时,对应的交换环R1和R2的代数结构,并给出了环的等价表述.
Abstract:The zero-divisor graphs of the direct product of commutative rings is studied.For any commutative ring R1 and R2,attention is focused on the diameter of R1×R2,and the algebraic structure of R1,R2,is determined where the diameter of Γ(R1×R2) is 1,2,or 3.Furthermore,the equivalent characterization of the diameter of the zero-divisor graph of R1×R2 is presented.
文章编号:20140219 中图分类号: 文献标志码:
基金项目:国家自然科学基金(11201407).
作者 | 单位 | |
刘琼 | 上海电力学院数理学院 | sky200547@126.com |
陈莉 | 盐城师范学院数学科学学院 |
引用文本:
刘琼,陈莉.环的直积的零因子图[J].上海电力大学学报,2014,30(2):185-187.
LIU Qiong,CHEN Li.Zero-divisor Graph of the Direct Product of Commutative Rings[J].Journal of Shanghai University of Electric Power,2014,30(2):185-187.
刘琼,陈莉.环的直积的零因子图[J].上海电力大学学报,2014,30(2):185-187.
LIU Qiong,CHEN Li.Zero-divisor Graph of the Direct Product of Commutative Rings[J].Journal of Shanghai University of Electric Power,2014,30(2):185-187.