###
上海电力大学学报:2014,30(4):315-318,323
本文二维码信息
码上扫一扫!
基于细菌趋化的改进粒子群算法在电力系统无功优化中的应用
(1.上海电力学院电气工程学院;2.上海市电力公司嘉定供电公司)
Application of Particle Swarm Optimization Based on Bacterial Chemotaxis to Reactive Power Optimization
(1.School of Electrical Engineering, Shanghai University of Electric Power, Shanghai 200090, China;2.Jiading Power Company, Shanghai Power Supply Company, Shanghai 138000, China)
摘要
图/表
参考文献
本刊相似文献
All Journals 相似文献
All Journals 引证文献
本文已被:浏览 1162次   下载 527
投稿时间:2013-12-23    
中文摘要: 传统粒子群算法易陷入局部最优、后期多样性差,得不到最优解.在原有无功优化数学模型的基础上,引入了基于细菌趋化的粒子群改进算法.通过算例表明,该算法可以有效克服传统粒子群算法的缺点,优化计算结果.
中文关键词: 粒子群算法  细菌趋化  无功优化
Abstract:Traditional PSO falls into local optimum easily and has a poor late diversity and can not obtain the optimal solution. Based on traditional mathematical model, a new PSO advanced method based on bacterial chemotaxis is introduced. The simulation example shows that it can overcome the above shortcomings of traditional particle swarm algorithm and optimize the result effectively.
文章编号:20140405     中图分类号:    文献标志码:
基金项目:
引用文本:
周涛,崔德义,任书燕.基于细菌趋化的改进粒子群算法在电力系统无功优化中的应用[J].上海电力大学学报,2014,30(4):315-318,323.
ZHOU Tao,CUI Deyi,REN Shuyan.Application of Particle Swarm Optimization Based on Bacterial Chemotaxis to Reactive Power Optimization[J].Journal of Shanghai University of Electric Power,2014,30(4):315-318,323.