本文已被:浏览 1162次 下载 527次
投稿时间:2013-12-23
投稿时间:2013-12-23
中文摘要: 传统粒子群算法易陷入局部最优、后期多样性差,得不到最优解.在原有无功优化数学模型的基础上,引入了基于细菌趋化的粒子群改进算法.通过算例表明,该算法可以有效克服传统粒子群算法的缺点,优化计算结果.
Abstract:Traditional PSO falls into local optimum easily and has a poor late diversity and can not obtain the optimal solution. Based on traditional mathematical model, a new PSO advanced method based on bacterial chemotaxis is introduced. The simulation example shows that it can overcome the above shortcomings of traditional particle swarm algorithm and optimize the result effectively.
文章编号:20140405 中图分类号: 文献标志码:
基金项目:
作者 | 单位 | |
周涛 | 上海电力学院电气工程学院 | 569978261@qq.com |
崔德义 | 上海市电力公司嘉定供电公司 | |
任书燕 | 上海电力学院电气工程学院 |
引用文本:
周涛,崔德义,任书燕.基于细菌趋化的改进粒子群算法在电力系统无功优化中的应用[J].上海电力大学学报,2014,30(4):315-318,323.
ZHOU Tao,CUI Deyi,REN Shuyan.Application of Particle Swarm Optimization Based on Bacterial Chemotaxis to Reactive Power Optimization[J].Journal of Shanghai University of Electric Power,2014,30(4):315-318,323.
周涛,崔德义,任书燕.基于细菌趋化的改进粒子群算法在电力系统无功优化中的应用[J].上海电力大学学报,2014,30(4):315-318,323.
ZHOU Tao,CUI Deyi,REN Shuyan.Application of Particle Swarm Optimization Based on Bacterial Chemotaxis to Reactive Power Optimization[J].Journal of Shanghai University of Electric Power,2014,30(4):315-318,323.