###
上海电力大学学报:2015,31(1):85-90
本文二维码信息
码上扫一扫!
基于贝叶斯疑似度的有向二分图模型的故障元件诊断
(1.国网四川省电力公司凉山供电公司;2.上海电力学院;3.上海航天控制技术研究所)
The Element Fault Diagnosis Model of Weighed Bipartite Directed Graph Based on Bayesian Suspected Degree
(1.State Grid Electric Power Company Liangshan Power Supply Company, Liangshan 615000, China;2.Shanghai University of Electric Power, Shanghai 200090, China;3.Shanghai Aerospace Control Technology Research Institute, Shanghai 200233, China)
摘要
图/表
参考文献
本刊相似文献
All Journals 相似文献
All Journals 引证文献
本文已被:浏览 1207次   下载 528
投稿时间:2014-09-24    
中文摘要: 针对目前已有的故障诊断方法存在的计算复杂度高、建模困难、诊断误差较大等不足,分析了故障与征兆之间的非确定性关系,建立了概率加权的有向二分图故障诊断模型,依据统计概率对模型进行初始化,结合开关量时序属性对征兆信息进行完备化处理,通过计算贝叶斯疑似度对电力系统中的故障进行诊断,输出故障诊断结果.
Abstract:Aiming at the disadvantages, including high computational complexity, difficulty of modeling and error of diagnosis which exist in the current fault diagnosis, the study analyzes the relationship between the fault and symptom, establishes a fault diagnosis model based on weighed bipartite directed graph. The model is initialized according to the statistical probability, the symptom is completed based on switch temporal logic, the Bayesian suspected degree of fault is calculated, and finally the results of fault diagnosis are put out.
文章编号:20150119     中图分类号:    文献标志码:
基金项目:
引用文本:
胡正,陈庆芳,黄忠培,等.基于贝叶斯疑似度的有向二分图模型的故障元件诊断[J].上海电力大学学报,2015,31(1):85-90.
HU Zheng,CHEN Qingfang,HUANG Zhongpei,et al.The Element Fault Diagnosis Model of Weighed Bipartite Directed Graph Based on Bayesian Suspected Degree[J].Journal of Shanghai University of Electric Power,2015,31(1):85-90.