###
上海电力大学学报:2016,32(2):167-174
本文二维码信息
码上扫一扫!
基于改进细菌觅食算法的无功优化
(上海电力学院 电子与信息工程学院)
Reactive Power Optimization Based on Modified Bacterial Foraging Optimization Algorithm
(School of Electronic and Information Engineering, Shanghai University of Electric Power, Shanghai 200090, China)
摘要
图/表
参考文献
本刊相似文献
All Journals 相似文献
All Journals 引证文献
本文已被:浏览 1817次   下载 1349
投稿时间:2015-07-07    
中文摘要: 采用改进的细菌觅食(MBFO)算法求解电力系统无功优化问题,引入了步长递减的控制策略,改善了算法前期的全局搜索能力和后期的局部搜索能力;引入了SA-PSO变异算子,从而使个体可以相互交流,并从精英那里得到经验;引入遗传算法的交叉和赌盘选择,保护了精英个体,同时降低了解劣化的概率.以IEEE-30节点为例的算例结果表明,较其他几种优化方法而言,MBFO具有更快的收敛速度和更好的优化效果,故该算法在解决无功优化问题上可行且有效.
Abstract:The reactive power optimization problem of power system is solved by Modified Bacterial Foraging Optimization Algorithm.The algorithm introduces a decreasing step sizes control mode to improve the global search ability in the early stage and the local search ability in the late stage.SA-PSO mutation operator is introduced to make individuals learn from each other;Genetic Algorithm roulette choosing and crossover mutation is introduced to protect the elites and suppress the degeneracy phenomenon.Taking IEEE-30 node test system for examples,the results show that the algorithm is effective in solving reactive power optimization problems and prove that the algorithm convergence speed and optimization algorithm have better performance than other optimization results.
文章编号:20160213     中图分类号:    文献标志码:
基金项目:
引用文本:
邓集瀚,杨俊杰.基于改进细菌觅食算法的无功优化[J].上海电力大学学报,2016,32(2):167-174.
DENG Jihan,YANG Junjie.Reactive Power Optimization Based on Modified Bacterial Foraging Optimization Algorithm[J].Journal of Shanghai University of Electric Power,2016,32(2):167-174.