本文已被:浏览 1679次 下载 672次
投稿时间:2017-03-09
投稿时间:2017-03-09
中文摘要: 为了提高汽轮发电机组的故障诊断准确率,提出了基于BP神经网络改进算法的故障诊断系统.根据输入特征向量对BP神经网络进行学习,在matlab上分别采用两种算法对故障诊断模型进行测试.结果表明,改进算法能够更有效地预测汽轮发电机组的故障.
Abstract:In order to improve the accuracy in the fault diagnosis of turbine generator,its improved algorithm of diagnosis system based on BP network is presented.According to input character vectors,BP nerve network is studied.In matlab platform,the actual monitoring data are used to test the fault of turbine generator unit based on BP and its improved BP algorithm.The experimental results show that the improved algorithm is more effective in predicting the fault of turbo generator.
文章编号:20174011 中图分类号: 文献标志码:
基金项目:
作者 | 单位 | |
马路林 | 上海电力学院 自动化工程学院 | ma_lin0328@163.com |
姚刚 | 上海电力学院 计算机科学与技术学院 |
引用文本:
马路林,姚刚.基于BP神经网络及其改进算法的汽轮发电机组故障诊断[J].上海电力大学学报,2017,33(4):362-366.
MA Lulin,YAO Gang.Fault Diagnosis of Turbo Generator Unit Based on BP Network and Its Improved Algorithm[J].Journal of Shanghai University of Electric Power,2017,33(4):362-366.
马路林,姚刚.基于BP神经网络及其改进算法的汽轮发电机组故障诊断[J].上海电力大学学报,2017,33(4):362-366.
MA Lulin,YAO Gang.Fault Diagnosis of Turbo Generator Unit Based on BP Network and Its Improved Algorithm[J].Journal of Shanghai University of Electric Power,2017,33(4):362-366.