###
上海电力大学学报:2017,33(4):362-366
本文二维码信息
码上扫一扫!
基于BP神经网络及其改进算法的汽轮发电机组故障诊断
(1.上海电力学院 自动化工程学院;2.上海电力学院 计算机科学与技术学院)
Fault Diagnosis of Turbo Generator Unit Based on BP Network and Its Improved Algorithm
(1.School of Automation Engineering, Shanghai University of Electric Power, Shanghai 200090, China;2.School of Computer Science and Technology, Shanghai University of Electric Power, Shanghai 200090, China)
摘要
图/表
参考文献
本刊相似文献
All Journals 相似文献
All Journals 引证文献
本文已被:浏览 1679次   下载 672
投稿时间:2017-03-09    
中文摘要: 为了提高汽轮发电机组的故障诊断准确率,提出了基于BP神经网络改进算法的故障诊断系统.根据输入特征向量对BP神经网络进行学习,在matlab上分别采用两种算法对故障诊断模型进行测试.结果表明,改进算法能够更有效地预测汽轮发电机组的故障.
Abstract:In order to improve the accuracy in the fault diagnosis of turbine generator,its improved algorithm of diagnosis system based on BP network is presented.According to input character vectors,BP nerve network is studied.In matlab platform,the actual monitoring data are used to test the fault of turbine generator unit based on BP and its improved BP algorithm.The experimental results show that the improved algorithm is more effective in predicting the fault of turbo generator.
文章编号:20174011     中图分类号:    文献标志码:
基金项目:
引用文本:
马路林,姚刚.基于BP神经网络及其改进算法的汽轮发电机组故障诊断[J].上海电力大学学报,2017,33(4):362-366.
MA Lulin,YAO Gang.Fault Diagnosis of Turbo Generator Unit Based on BP Network and Its Improved Algorithm[J].Journal of Shanghai University of Electric Power,2017,33(4):362-366.