###
上海电力学院学报:2017,33(4):389-393
本文二维码信息
码上扫一扫!
基于机器学习的用户窃电行为预测
(上海电力学院 计算机科学与技术学院)
Prediction of User Stealing Behavior Based on Machine Learning
(School of Computer Science and Technology, Shanghai University of Electric Power, Shanghai 200090, China)
摘要
图/表
参考文献
相似文献
本文已被:浏览 396次   下载 1999
投稿时间:2017-03-09    
中文摘要: 新型智能电表普及后,为了准确检测出电网中的窃电用户,可以结合机器学习的方法.为此,选择了支持向量机、随机森林和迭代决策树3种机器学习中较常用的大数据算法进行分析,通过不断调整试验数据集的大小,对3种算法的效率和准确率进行测试.对比分析结果发现,随机森林算法运行的时间和数据量的大小基本呈线性关系,效率较高,且准确率稳定在86%以上,表现较好.
Abstract:Accurate detection of the power grid users can be combined with the machine learning method after the popularity of new smart meters.For this purpose,three kinds of machine learning more commonly used in large data algorithm are chosen for analysis:random forest,support vector machine and gradient boosting decision tree.The efficiency and accuracy of the three algorithms are tested by constantly adjusting the size of the test data set.Analysis of the results shows that the random forest algorithm runs in a linear relationship with the amount of time and the amount of data,while the accuracy rate of stability is higher than 86%,with better performances.
文章编号:     中图分类号:    文献标志码:
基金项目:国家自然科学基金(61403247);上海市信息安全综合管理技术研究重点实验室开放课题项目(AGK2015 005);上海市科学技术委员会地方能力建设项目(15110500700).
引用文本:
许智,李红娇,陈晶晶.基于机器学习的用户窃电行为预测[J].上海电力学院学报,2017,33(4):389-393.
XU Zhi,LI Hongjiao,CHEN Jingjing.Prediction of User Stealing Behavior Based on Machine Learning[J].Journal of Shanghai University of Electric Power,2017,33(4):389-393.