本文已被:浏览 889次 下载 510次
投稿时间:2018-04-18
投稿时间:2018-04-18
中文摘要: 为了快速、准确地检测电动汽车充电的电流谐波,提出了基于三角函数神经网络的电流谐波实时分析方法。利用权重对电流的谐波分量进行估计,建立电流谐波分量参数与权重的关系,在学习中采用负梯度下降法更新权重,求取三角函数神经网络的最优权重,从而快速、精确地估计系统谐波分量的幅值、相角等相关参数。通过MATLAB对所提出方法进行仿真分析,并与快速傅里叶变换(FFT)方法进行对比,结果表明,所提方法鲁棒性较好,能够更加快速、准确地检测电流的各次谐波成分。
Abstract:In order to quickly and accurately check the harmonic problems of electric vehicle charging,a neural network is proposed based on triangle function of current real-time harmonic analysis method,which uses the weighted harmonic component of current estimates that first uses current weight,the negative gradient descent method which is used to update weights,calculate the trigonometric function of the optimal weights of the neural network.Using the optimal weight can have fast and accurate estimation system harmonic component and related parameters,good robustness,and can quickly realize the analysis of the current every harmonic parameter.Finally,the method is simulated and analyzed by MATLAB,and the fast Fourier transform (FFT) technique is compared.The results show that the current harmonic data can be detected quickly and effectively.
keywords: harmonic analysis neural network of trigonometric functions negative gradient descent method fast Fourier transform
文章编号:20186009 中图分类号: 文献标志码:
基金项目:
作者 | 单位 | |
陈忠华 | 杭州市电力设计院有限公司 | |
王育飞 | 上海电力学院 | |
俞容江 | 杭州市电力设计院有限公司 | |
胡晨刚 | 杭州市电力设计院有限公司 | |
薛花 | 上海电力学院 | xuehua@shiep.edu.cn |
王艳青 | 上海电力学院 |
引用文本:
陈忠华,王育飞,俞容江,等.基于三角函数神经网络的电动汽车充电电流谐波分析方法[J].上海电力大学学报,2018,34(6):558-562,566.
CHEN Zhonghua,WANG Yufei,YU Rongjiang,et al.Electric Vehicle Charging Current Harmonic Analysis Method Based on Trigonometric Function Neural Network[J].Journal of Shanghai University of Electric Power,2018,34(6):558-562,566.
陈忠华,王育飞,俞容江,等.基于三角函数神经网络的电动汽车充电电流谐波分析方法[J].上海电力大学学报,2018,34(6):558-562,566.
CHEN Zhonghua,WANG Yufei,YU Rongjiang,et al.Electric Vehicle Charging Current Harmonic Analysis Method Based on Trigonometric Function Neural Network[J].Journal of Shanghai University of Electric Power,2018,34(6):558-562,566.