###
上海电力大学学报:2019,35(3):253-260
本文二维码信息
码上扫一扫!
基于LGRP和多特征融合的人脸表情识别
(上海电力学院 电子与信息工程学院)
Facial Expression Recognition Based on LGRP and Multi-feature Fusion
(School of Electronics and Information Engineering, Shanghai University of Electric Power, Shanghai 200090, China)
摘要
图/表
参考文献
本刊相似文献
All Journals 相似文献
All Journals 引证文献
本文已被:浏览 1122次   下载 440
投稿时间:2018-06-17    
中文摘要: 针对复杂的Gabor滤波器直接抽取人脸特征数据存在一些冗余信息以及提取的表情特征较为单一的缺点,提出了基于LGRP和多特征融合人脸表情的识别方法。首先,提取人脸表情图像的Gabor多方向和多尺度特征,进一步编码得到局部Gabor排序模式(LGRP),以增强鲁棒性以及区分能力;其次,引入Haar小波和Otsu阈值分割法分别提取表情特征,通过级联融合3种不同的特征,可以全面地表达图像的局部特征和全局特征;最后,采用支持向量机(SVM)对人脸表情进行多分类。在CK+表情库上进行仿真实验,平均识别率达到94.36%。与其他方法的比较结果表明,该方法取得了很好的识别率和鲁棒性。
Abstract:The method of multi-features combined with Local Gabor Rank Pattern (LGRP) to extract facial expressional features is proposed in order to overcome complex Gabor filter which directly extracts the facial expressional features with some redundant information and the extraction is relatively single.First,the Gabor multi-directional and multi-scale features are extracted in images,and the LGRP is further coded to enhance the robustness and differentiation ability.Then,to extract the multi-orientation information and reduce the dimension of the features,two fusion rules are proposed to fuse the original Gabor features of the same scale into a single feature.Third,to extract facial expression features respectively,the Haar wavelet and Otsu threshold segmentation methods and three different features are fused through cascades.It can represent effectively local features and global features.Finally,the facial expressions are identified using Support Vector Machine (SVM).The average recognition rate of 94.36% is achieved in CK+ emotion databases.Compared with other methods,this method has achieved a good recognition rate and robustness.
文章编号:20193011     中图分类号:TP391.4    文献标志码:
基金项目:国家自然科学基金青年科学基金(61302151,61401268);上海市自然科学基金(15ZR1418400)。
引用文本:
钱勇生,邵洁,季欣欣.基于LGRP和多特征融合的人脸表情识别[J].上海电力大学学报,2019,35(3):253-260.
QIAN Yongsheng,SHAO Jie,JI Xinxin.Facial Expression Recognition Based on LGRP and Multi-feature Fusion[J].Journal of Shanghai University of Electric Power,2019,35(3):253-260.