本文已被:浏览 1149次 下载 713次
投稿时间:2019-10-30
投稿时间:2019-10-30
中文摘要: 针对发电厂中指针式仪表数量多、周围环境复杂、灰尘污染等因素导致获得的图像含有大量噪声从而影响仪表读数识别精度的问题,提出了一种改进Canny边缘检测算法,通过采用5×5邻域计算像素梯度幅值的方法,提高了边缘检测精度,并采用自适应双阈值选择法,有效避免了传统Canny算法易出现伪边缘、边缘信息多等现象,结合Hough变换技术提取仪表指针信息,提高仪表识别精度。经实验对比验证,该算法检测效果优于传统Canny算法,仪表读数识别精度达到95%。
Abstract:Due to the large number of pointer instruments,the complex environment,dust pollution and other factors in power plants,the image obtained contains a lot of noise which affects the accuracy of meter reading recognition.An improved Canny edge detection algorithm is presented.By adopting the method of 5×5 neighborhood to calculate the amplitude of pixel gradient,edge detection accuracy is improved and adaptive double threshold selection method is adopted.Compared with traditional Canny algorithm,it can avoid false edge and more edge information.The instrument pointer information is extracted by Hough transform technology,the accuracy of instrument identification is improved.Verified by comparison,the detection result of this algorithm is better than that of traditional Canny algorithm,and the accuracy of meter reading recognition is 95%.
keywords: pointer instrument edge detection Canny algorithm adaptive double threshold Hough transform accuracy of meter reading
文章编号:20202015 中图分类号:TP751 文献标志码:
基金项目:上海市科学技术委员会工程技术研究中心项目(14DZ2251100)。
引用文本:
姚洋,彭道刚,王志萍.基于改进Canny检测与Hough变换的仪表图像识别算法[J].上海电力大学学报,2020,36(2):183-189.
YAO Yang,PENG Daogang,WANG Zhiping.The Instrument Image Recognition Algorithm Based on Canny Detection and Hough Transform[J].Journal of Shanghai University of Electric Power,2020,36(2):183-189.
姚洋,彭道刚,王志萍.基于改进Canny检测与Hough变换的仪表图像识别算法[J].上海电力大学学报,2020,36(2):183-189.
YAO Yang,PENG Daogang,WANG Zhiping.The Instrument Image Recognition Algorithm Based on Canny Detection and Hough Transform[J].Journal of Shanghai University of Electric Power,2020,36(2):183-189.