本文已被:浏览 1538次 下载 896次
投稿时间:2019-09-09
投稿时间:2019-09-09
中文摘要: 能源互联网的主体是基于状态估计下的电力系统。虚假数据注入攻击(FDIA)通过恶意篡改或注入电力数据,进而引发错误的状态估计结果。这种攻击方式存在引发大面积停电事故的风险,严重影响能源互联网的正常运行。在matpower 4.0中的IEEE-14节点系统上,利用以残差方程为基础的标准残差检测法和目标函数极值法,对FDIA进行了检测实验。提出了一种基于卡尔曼滤波的FDIA检测方法,并在MATLAB上进行了验证。实验结果表明,该方法可以在短时间内发现FDIA的发生。
Abstract:The main part of energy Internet is the power system based on state estimation.False data injection attacks(FDIA) cause false state estimates by maliciously altering or injecting power data.This attacks has the risk of causing a large area of power failure, which seriously affects the normal operation of the energy Internet.On the IEEE-14 node system in matpower 4.0, the standard residual detection method based on residual equation and the extreme value method of objective function are used to detect the injection attack of false data.A FDIA detection method based on Kalman filtering is proposed, and the effectiveness of the method is verified in MATLAB.Experimental results show that the method can detect the occurrence of false data injection attacks in a short time.
文章编号:20212020 中图分类号:TP391.9;TM743 文献标志码:
基金项目:国家自然科学基金(61772327);上海市自然科学基金(16ZR1436300);浙江大学工业控制技术国家重点实验室开放式基金(ICT1800380);智能电网产学研开发中心项目(A-0009-17-002-05)。
作者 | 单位 | |
王勇 | 上海电力大学 | |
武津园 | 上海电力大学 | qqddoo@126.com |
陈雪鸿 | 国家工业信息安全发展研究中心 | |
程彦喆 | 东南大学 | |
刘丽丽 | 华电电力科学研究院有限公司国家能源分布式能源技术研发(实验)中心 |
引用文本:
王勇,武津园,陈雪鸿,等.基于卡尔曼滤波的电力虚假数据注入攻击检测方法[J].上海电力大学学报,2021,37(2):205-210.
WANG Yong,WU Jinyuan,CHEN Xuehong,et al.Intrusion Detection Method of False Data Injection Attack in Power System Based on Kalman Filter[J].Journal of Shanghai University of Electric Power,2021,37(2):205-210.
王勇,武津园,陈雪鸿,等.基于卡尔曼滤波的电力虚假数据注入攻击检测方法[J].上海电力大学学报,2021,37(2):205-210.
WANG Yong,WU Jinyuan,CHEN Xuehong,et al.Intrusion Detection Method of False Data Injection Attack in Power System Based on Kalman Filter[J].Journal of Shanghai University of Electric Power,2021,37(2):205-210.