###
上海电力大学学报:2021,37(5):467-470
本文二维码信息
码上扫一扫!
隐马尔可夫模型的构建及实现
(上海电力大学 计算机科学与技术学院)
Construction and Implementation of Hidden Markov Model
(School of Computer Science and Technology, Shanghai University of Electric Power, Shanghai 200090, China)
摘要
图/表
参考文献
本刊相似文献
All Journals 相似文献
All Journals 引证文献
本文已被:浏览 1057次   下载 301
投稿时间:2020-03-18    
中文摘要: 隐马尔可夫模型在语音识别、自然语言处理、生物信息、模式识别等领域有着广泛的应用。介绍了隐马尔可夫模型的基本概念,分别叙述了隐马尔可夫模型的概率计算算法、学习算法以及预测算法。利用观测的海藻湿度数据作为训练数据,找出隐藏的转换概率,构建了隐马尔可夫模型,完成了预测天气变化的机器学习。
Abstract:Hidden Markov model is widely used in speech recognition,natural language processing,biological information,pattern recognition and other fields.This paper first introduces the basic concept of hidden Markov model,and then describes the probability calculation algorithm,learning algorithm and prediction algorithm of hidden Markov model.Using the observed seaweed humidity data as the training data,we can find out the hidden conversion probability,and build the hidden Markov model and complete the machine learning of forecasting weather changes.
文章编号:20215009     中图分类号:TP312    文献标志码:
基金项目:
引用文本:
刘辉.隐马尔可夫模型的构建及实现[J].上海电力大学学报,2021,37(5):467-470.
LIU Hui.Construction and Implementation of Hidden Markov Model[J].Journal of Shanghai University of Electric Power,2021,37(5):467-470.