本文已被:浏览 762次 下载 383次
投稿时间:2020-06-04
投稿时间:2020-06-04
中文摘要: 随着知识图谱技术的发展,在构建太阳能光伏产业新兴技术辨识模型的基础上,根据相关软件所生成的科学知识图谱提取出技术演进的时间维度及领域维度,具有很强的研究意义;同时,设备选型和物资采购等活动使得用户从大量的信息中挑选目标信息变得复杂且耗时。推荐系统(RS)旨在为用户找到满足个性化兴趣的一组物品来解决信息爆炸的问题,但目前仍存在冷启动等不足。利用知识图谱分析并构建用户和项目的关系模型,可以有效地提高个性化推荐的精确度。为此,研究了如何利用知识图谱进行准确和可解释的推荐,并指出了该领域可能的研究方向。
Abstract:In recent years,with the development of knowledge graph technology,based on the construction of a new technology identification model for the solar photovoltaic industry,the time dimension and field dimension of technological evolution are extracted based on the scientific knowledge graph generated by related software,which has strong research significance.At the same time,equipment selection and material procurement act make it complicated and time-consuming for users to select target information from a large amount of information.The recommendation system (RS) aims to solve the problem of information explosion by finding a set of items that satisfy the user’s personalized interests,but it still faces problems such as cold start.Using the knowledge graph to analyze and build a relationship model between users and items can effectively improve the accuracy of personalized recommendations.This article focuses on how to use knowledge graphs to make accurate and interpretable recommendations,and finally puts forward possible research directions in this field.
文章编号:202202010 中图分类号:TP389.1 文献标志码:
基金项目:
作者 | 单位 | |
杨振辰 | 上海新达新能源有限公司 | |
汤悦 | 上海电力大学 | tangyue@mail.shiep.edu.cn |
Author Name | Affiliation | |
YANG Zhenchen | Shanghai Electric Power Xinda New Enery Technology Co., Ltd. | |
TANG Yue | Shanghai University of Electric Power | tangyue@mail.shiep.edu.cn |
引用文本:
杨振辰,汤悦.知识图谱在推荐系统中的应用研究[J].上海电力大学学报,2022,38(2):163-170.
YANG Zhenchen,TANG Yue.Research on Application of Knowledge Graph in Recommendation System[J].Journal of Shanghai University of Electric Power,2022,38(2):163-170.
杨振辰,汤悦.知识图谱在推荐系统中的应用研究[J].上海电力大学学报,2022,38(2):163-170.
YANG Zhenchen,TANG Yue.Research on Application of Knowledge Graph in Recommendation System[J].Journal of Shanghai University of Electric Power,2022,38(2):163-170.