本文已被:浏览 618次 下载 423次
投稿时间:2021-10-23
投稿时间:2021-10-23
中文摘要: 随着深度学习技术的发展,在电厂输变电设备状态检测上也起到了举足轻重的作用。通过对输变电设备状态检测方法应用特点的研究,概述了各个方法的优缺点及其发展趋势,从而得到了各个方法的突出点及其相互之间的联系。
Abstract:Deep learning plays an important role in state detection of transmission and transformation equipment.This paper studies the application characteristics of the state detection methods of power transmission and transformation equipment,summarizes the advantages and disadvantages of the methods and their development trend,and obtains the outstanding points of each method and the relationship between them.
keywords: deep learning power transmission and transformation equipment status of transmission digital power grid
文章编号:20223010 中图分类号:TM407 文献标志码:
基金项目:
作者 | 单位 | |
李洵 | 贵州电网有限责任公司信息中心 | lixun8266687@163.com |
龙玉江 | 贵州电网有限责任公司信息中心 | |
舒彧 | 贵州电网有限责任公司信息中心 | |
杨濡蔓 | 贵州电网有限责任公司信息中心 | |
卫薇 | 贵州电网有限责任公司信息中心 |
引用文本:
李洵,龙玉江,舒彧,等.基于深度学习的输变电设备状态检测综述[J].上海电力大学学报,2022,38(3):264-268.
LI Xun,LONG Yujiang,SHU Yu,et al.Overview of State Detection of Power Transmission and Transformation Equipment Based on Deep Learning[J].Journal of Shanghai University of Electric Power,2022,38(3):264-268.
李洵,龙玉江,舒彧,等.基于深度学习的输变电设备状态检测综述[J].上海电力大学学报,2022,38(3):264-268.
LI Xun,LONG Yujiang,SHU Yu,et al.Overview of State Detection of Power Transmission and Transformation Equipment Based on Deep Learning[J].Journal of Shanghai University of Electric Power,2022,38(3):264-268.