###
上海电力大学学报:2023,39(2):117-122
本文二维码信息
码上扫一扫!
基于卷积神经网络的电力信息物理融合系统入侵检测方法研究
(1.上海电力大学;2.大航有能电气有限公司)
Research on Intrusion Detection Method of Power Information Physical Fusion System Based on Convolutional Neural Network
(1.Shanghai University of Electric Power, Shanghai 200090, China;2.Dahang Youneng Electrical Co., Ltd., Zhenjiang, Jiangsu 212200, China)
摘要
图/表
参考文献
本刊相似文献
All Journals 相似文献
All Journals 引证文献
本文已被:浏览 714次   下载 398
投稿时间:2022-10-24    
中文摘要: 现有的面向电力信息物理融合系统(CPPS)的入侵检测方法存在不够重视数据质量等问题,尤其是在处理离散化数据方面存在欠缺。为解决上述问题,提出了一种基于实体嵌入和卷积神经网络的CPPS入侵检测方法。该方法通过实体嵌入技术将数据集中的离散型特征映射为连续向量,从而生成高质量的新数据。将其与经过标准化的连续型特征合并起来作为新数据集训练卷积神经网络,以建立CPPS入侵检测模型。在KDD Cup 99数据集上的实验评估结果表明,所提方案的攻击检测准确率分别比独热编码和传统顺序编码提高了6.20%和6.04%,同时还减小了误报率和漏报率。
Abstract:The existing intrusion detection methods for cyber-physical power systems have some problems such as not paying enough attention to data quality, especially in dealing with discrete data in data sets.In order to address the above issues, an intrusion detection method for cyber-physical power system based on entity embedding and convolutional neural network is proposed, which maps the discrete features in the data set to continuous vectors through entity embedding technology to better represent the discrete features and generate high-quality new data.After that, it is combined with the standardized continuous features as a new dataset to train the convolutional neural network to establish the intrusion detection model of the cyber-physical power system.The experimental evaluation results on the KDD Cup 99 dataset show that the proposed scheme improves the attack detection accuracy by 6.2% and 6.04% compared with the one-hot encoding and the traditional sequential encoding, respectively, and further reduces the false positive rate and false negative rate.
文章编号:20232003     中图分类号:TP393.08    文献标志码:
基金项目:
引用文本:
周柏润,孙伟,魏敏捷,等.基于卷积神经网络的电力信息物理融合系统入侵检测方法研究[J].上海电力大学学报,2023,39(2):117-122.
ZHOU Bairun,SUN Wei,WEI Minjie,et al.Research on Intrusion Detection Method of Power Information Physical Fusion System Based on Convolutional Neural Network[J].Journal of Shanghai University of Electric Power,2023,39(2):117-122.