本文已被:浏览 642次 下载 323次
投稿时间:2023-02-22
投稿时间:2023-02-22
中文摘要: 针对电力巡检中标志牌难以被高精度识别问题,提出了一种基于改进型PPYOLOE的电力标志牌检测识别模型。首先,通过改进RepResBlock模块结构,加强卷积核单一参数的特征表达能力,增加模型权重维度的同时提升整个网络的泛化能力;然后,引入CIoU损失函数,解决了预测框与真实框不相交、收敛慢的问题,保证预测框和真实框的宽高比更为接近,提高回归精度;最后,改进数据增强Mosaic方法,降低负样本误检率,提高了模型精度和鲁棒性。实验结果表明:所提方法显著提高了检测模型性能,平均精度达98.4%,量化和蒸馏后检测模型体积压缩为原来的26.1%,自制样本库使文字检测和识别精度均超过90%。
中文关键词: 电力标志牌检测 文字识别 改进型PPYOLOE
Abstract:Aiming at the problem of high-precision recognition of signboard in power patrol,a model of power signboard detection and recognition based on improved PPYOLOE is proposed.Firstly,the RepResBlock module is modified to enhance the feature expression ability of single parameter convolution kernel,then the weight dimension of the model is increased,and the generalization ability of the whole network is raised.Secondly,the CIoU Loss function is introduced,which solves the problem of slow convergence when the prediction box does not intersect the real box,and ensures the aspect ratio of prediction box and the real box closer,which upgrades the regression accuracy of the prediction box.Thirdly,the data enhancement Mosaic method is optimized to reduce the error detection rate of negative samples and reinforce the accuracy and robustness of the model.The experimental results show that the proposed method significantly improves the detection model performance,with an mAP0.5 of 98.4%.Moreover,the model volume is compressed to 26.1% after quantification and distillation,and self-made sample library enables both the text detection and recognition accuracy to exceed 90%.
文章编号:20234015 中图分类号:TM769 文献标志码:
基金项目:
引用文本:
袁靖,潘明,朱宁.基于改进型PPYOLOE的电力标志牌检测识别技术研究[J].上海电力大学学报,2023,39(4):399-406.
YUAN Jing,PAN Ming,ZHU Ning.Research on Detection and Recognition of Power Signboard Based on Improved PPYOLOE[J].Journal of Shanghai University of Electric Power,2023,39(4):399-406.
袁靖,潘明,朱宁.基于改进型PPYOLOE的电力标志牌检测识别技术研究[J].上海电力大学学报,2023,39(4):399-406.
YUAN Jing,PAN Ming,ZHU Ning.Research on Detection and Recognition of Power Signboard Based on Improved PPYOLOE[J].Journal of Shanghai University of Electric Power,2023,39(4):399-406.