###
Journal of ShangHai University of Electric Power :2016,32(6):583-588,602
View/Add Comment     Archive    Advanced search     HTML
←Previous   |   Next
基于不同学习算法的RBF神经网络在故障诊断中的应用
(1.上海电力学院 自动化工程学院;2.安徽华电六安电厂有限公司 热控分厂)
Application of Fault Diagnosis Based on RBF Neural Network with Different Learning Algorithms
(1.School of Automation Engineering, Shanghai University of Electric Power, Shanghai 200090, China;2.Anhui Huadian Luan Power Genration Co., Ltd.C&I, Lu'an 237000, China)
Abstract
Image-text
References
Similar literature
本文已被:浏览 1219次   下载 647
Received:October 20, 2015    
中文摘要: 基于对RBF神经网络常用的3种学习算法的研究,通过对凝汽器典型故障类型与故障征兆分析,提出了基于不同学习算法的RBF神经网络凝汽器故障诊断,并对诊断结果进行比较.诊断结果表明,基于3种常见学习算法的RBF神经网络都可以准确诊断出凝汽器的各种故障,但聚类方法和OLS算法学习速度要快得多,梯度训练方法速度较慢.研究还表明,RBF神经网络在故障诊断领域具有很好的实用性.
Abstract:Through the research of three kinds of learning algorithms for RBF neural network and analysis of typical faults and symptoms of the condenser,RBF neural network based on different learning algorithms for the condenser fault diagnosis is presented.Finally,the result of the diagnosis is compared.Diagnosis results show RBF neural network based on three kinds of learning algorithms can accurately diagnose various fault diagnosis of the condenser.But the study speed of the clustering method and the OLS algorithm is faster;on the contrary,the gradient training method is slower.The research also shows that the RBF neural network has good practicability in the field of fault diagnosis.
文章编号:201600617     中图分类号:    文献标志码:
基金项目:
Reference text: