本文已被:浏览 1754次 下载 609次
Received:March 18, 2020
Received:March 18, 2020
中文摘要: 基于加密的数据挖掘技术往往计算复杂度太高,而差分隐私作为一种数据扰动技术,既能有效降低计算复杂度,又能让使用者分析数据的整体价值。简要分析了差分隐私在具有敏感信息的智能数据挖掘系统中的相关技术。首先,介绍了差分隐私的基本概念;其次,针对频繁项挖掘、回归与分类以及深度学习,分别介绍了差分隐私在敏感数据挖掘中的应用;最后,对比了最新研究方法的性能和优缺点,为进一步研究隐私保护数据挖掘技术提供相关参考。
Abstract:Data mining technology based on encryption often has too high computational complexity.However,as a data perturbation technology,differential privacy can effectively reduce the computational complexity and allow users to analyze the overall value of data.This article briefly analyzes the related technologies of differential privacy in intelligent data mining systems with sensitive information.First,the basic concepts of differential privacy are introduced.Second,differential privacy is introduced for the three major categories of frequent item mining,regression and classification in the application of sensitive data mining,in deep learning.Finally,the performance,advantages and disadvantages of the latest research methods are compared,which provides a reference direction for further research on privacy-protected data mining technology.
文章编号:20204015 中图分类号:TP309.2 文献标志码:
基金项目:国家自然科学基金(61872230)。
Reference text: