###
Journal of ShangHai University of Electric Power :2021,37(5):475-480
View/Add Comment     Archive    Advanced search     HTML
←Previous   |   Next
基于混合高斯分布的广义零样本识别
(上海电力大学 电子与信息工程学院)
A Method for Generalized Zero-shot Learning Based on Gaussian Mixture Distribution
(School of Electronics and Information Engineering, Shanghai University of Electric Power, Shanghai 200090, China)
Abstract
Image-text
References
Similar literature
本文已被:浏览 639次   下载 285
Received:March 24, 2020    
中文摘要: 与传统零样本识别相比,广义零样本识别的样本不仅包括测试类别样本,还包括训练类别样本,因此,广义零样本识别更具有现实意义。提出了一种基于混合高斯分布的广义零样本识别的算法(MGM-VAE),在编码器中采用多个通道结构,促使变分自编码器(VAE)模型可以在更广泛的空间内寻求更好的映射解。
Abstract:Compared with the traditional zero-shot learning,generalized zero-shot learning includes the test category and the training category.Therefore,generalized zero-shot learning is more realistic.This paper proposes a generalized zero-shot learning algorithm based on a Gaussian mixture distribution (MGM-VAE).Multi-channel structures is used in the encoder,so that the variational auto encoding(VAE) model can seek a better mapping solution in a wider space.
文章编号:20215011     中图分类号:TP391    文献标志码:
基金项目:
Reference text: