###
Journal of ShangHai University of Electric Power :2024,40(6):571-578
View/Add Comment     Archive    Advanced search     HTML
←Previous   |   Next
基于改进YOLOv9算法的配电网绝缘子缺陷检测
(国网福建省电力有限公司电力科学研究院)
Insulator Defect Detection in Distribution Network Based on Improved YOLOv9 Method
(State Grid Fujian Electric Power Research Institute, Fuzhou, Fujian 350000, China)
Abstract
Image-text
References
Similar literature
本文已被:浏览 155次   下载 163
Received:November 17, 2024    
中文摘要: 配电网绝缘子缺陷检测是保障电力系统安全运行的重要前提。针对绝缘子缺陷检测中小目标特征复杂、尺度小等问题,基于YOLOv9算法进行改进,从网络结构和损失函数两方面优化性能。首先,结合传统注意力机制的局限性,提出了四重注意力模块(QAM),在三重注意力模块(TAM)的基础上增加了空间注意力分支,在保留模型跨维度交互能力的同时,增强了模型对绝缘子缺陷具体空间位置的关注,提升了小目标特征的提取能力;其次,引入 Powerful-IoU损失函数,进一步提高检测精度。在公开数据集上的实验结果表明,改进的 YOLOv9算法在绝缘子缺陷检测任务中,以 81 FPS的检测速度实现了 82.8%的 Mmap@0.5,较 YOLOv9算法提高了3.6%。
Abstract:Insulator defect detection in distribution networks is a crucial task for ensuring the safe operation of power systems. To address the challenges of complex small-object features and small scales in insulator defect detection,improvements are made based on the YOLOv9 algorithm that proposed to optimize the performance in both network structure and loss function. Firstly,to overcome the limitations of traditional attention mechanisms,a quad attention module (QAM)is proposed,adding a spatial attention branch to the existing triple attention module (TAM). This enhancement retains the model’s ability to capture cross-dimensional interactions while strengthening its focus on the specific spatial location of insulator defects,thereby improving its ability to extract features from small objects. Secondly,the Power-IoU loss function is introduced to accelerate model convergence. Experimental results on public datasets show that the improved model achieves 82.8% Mmap@0.5 with a detection speed of 81 FPS on the insulator defect detection task,representing a 3.6% improvement over the original YOLOv9 model.
文章编号:20246011     中图分类号:TM769    文献标志码:
基金项目:
Reference text: