本文已被:浏览 1731次 下载 583次
投稿时间:2007-10-30
投稿时间:2007-10-30
中文摘要: 在处理矩阵问题时,利用特征理论是一大方法.哈密尔顿-凯莱定理揭示了方阵和它对应的特征多项式之间的关系,是特征多项式所具有的一个重要性质.除在理论上极为重要外,对解决某些具体问题也有独特的用处.结合实例,介绍了哈密尔顿-凯莱定理在证明及求方阵的逆阵、方阵的高阶幂中的应用.
Abstract:Taking advantage of feature theory is an important way in dealing with the matrix problem. Hamilton-cayley Theorem reveals the relationship between the matric and its feature polgnomial. It is not only very important in theory,but also convenient in dealing with some concrete problems. Application of Hamilton-cayley Theorem in improving some conclusion and the computation of inverse matrix and matrix power is discussed by exampl ification.
文章编号:20080224 中图分类号: 文献标志码:
基金项目:上海高校选拔培养优秀青年教师科研专项基金(Z-2006-89)
作者 | 单位 |
李丽花 | 上海电力学院 数理系, 上海 200090 |
Author Name | Affiliation |
LI Li-hua | Dept. of Mathematics and Physics, Shanghai University of Electric Power, Shanghai 200090, China |
引用文本:
李丽花.哈密尔顿-凯莱定理的应用[J].上海电力大学学报,2008,24(2):192-194.
LI Li-hua.The Application of Hamilton-cayley Theorem[J].Journal of Shanghai University of Electric Power,2008,24(2):192-194.
李丽花.哈密尔顿-凯莱定理的应用[J].上海电力大学学报,2008,24(2):192-194.
LI Li-hua.The Application of Hamilton-cayley Theorem[J].Journal of Shanghai University of Electric Power,2008,24(2):192-194.