本文已被:浏览 856次 下载 513次
投稿时间:2008-10-20
投稿时间:2008-10-20
中文摘要: 提出了数值求解一类对流扩散方程组的一种两层隐式差分格式.采用von Neum ann方法证明了格式是无条件稳定的,并且在每一时间层上只用到u和v的3个网格点.因此,只要计算分块3对角线性方程组即可.数值实验结果验证了该方法的精确性和可靠性.
Abstract:A two-level implicit difference scheme is proposed to solve some convection-diffusion equations.The truncation of the scheme is O(k2+ h2).It is proved to be unconditionally stable by yon Neumann method.Since only three points of u and v are used at each time level, the block tridiagonal linear systems are solved.Numerical results validate the efficiency and dependability.
文章编号:20090223 中图分类号: 文献标志码:
基金项目:上海高校选拔培养优秀青年教师科研专项基金(Z-2006-88)
作者 | 单位 |
管秋琴 | 上海电力学院 数理系, 上海 200090 |
Author Name | Affiliation |
GUAN Qiu-qin | Dept.of Mathematics & Physics, Shanghai University of Electric Power, Shanghai 200090, China |
引用文本:
管秋琴.一类对流扩散方程组的差分格式与稳定性[J].上海电力大学学报,2009,25(2):192-195.
GUAN Qiu-qin.Difference Scheme and Stability for Some Convection-Diffusion Equations[J].Journal of Shanghai University of Electric Power,2009,25(2):192-195.
管秋琴.一类对流扩散方程组的差分格式与稳定性[J].上海电力大学学报,2009,25(2):192-195.
GUAN Qiu-qin.Difference Scheme and Stability for Some Convection-Diffusion Equations[J].Journal of Shanghai University of Electric Power,2009,25(2):192-195.