本文已被:浏览 992次 下载 598次
投稿时间:2012-03-16
投稿时间:2012-03-16
中文摘要: 介绍了小脑模型神经网络原理,提出了神经网络与PID的复合控制算法.将该算法应用于温度控制中,对各个控制器的输出进行了仿真跟踪,并研究了其抗干扰性能,以及改变被控对象参数时的系统响应特性.仿真结果表明,神经网络CMAC与PID复合控制的输出误差小、实时性好、鲁棒性强,抗干扰能力较好.
Abstract:The principle of CMAC ( Cerebella Model Articulation Controller) is described,the neural network CMAC and PID composite control algorithm is proposed,which is applied in the temperature control to track the simulation of each controller and study its anti-jamming. Simulation results show that for the step input,the feedforward control has better results and a certain antiinterference ability. This fully reflects the advantages of neural network CMAC and PID composite control,that is,small output error,real-time and strong robust.
文章编号:20120423 中图分类号: 文献标志码:
基金项目:国家自然科学基金资助项目(61040013);上海市教育委员会重点学科建设项目(J51303)
引用文本:
薛阳,汪莎.CMAC神经网络与PID复合控制在温度控制中的应用[J].上海电力大学学报,2012,28(4):396-399.
XUE Yang,WANG Sha.CMAC Neural Network and PID Composite Control in the Application of Temperature Control[J].Journal of Shanghai University of Electric Power,2012,28(4):396-399.
薛阳,汪莎.CMAC神经网络与PID复合控制在温度控制中的应用[J].上海电力大学学报,2012,28(4):396-399.
XUE Yang,WANG Sha.CMAC Neural Network and PID Composite Control in the Application of Temperature Control[J].Journal of Shanghai University of Electric Power,2012,28(4):396-399.