本文已被:浏览 1314次 下载 641次
投稿时间:2012-06-23
投稿时间:2012-06-23
中文摘要: 首先对采样信号用db4小波进行10层的多分辨分解, 提取扰动信号各层能量与标准信号的能量差作为特征向量;然后用PCA对特征向量进行降维, 取3维数据作为分类的特征向量, 并将训练集采用交叉验证的方法自适应选择最优参数, 并构造训练集模型;最后将测试集数据代入训练集模型进行分类测试.测试结果表明, 在PCA降维后可以实现扰动的分类:分辨率高;抗噪能力强;适用于电能质量扰动的分类.
Abstract:Firstly, db4-wavelet is used to analyze PQD signals with multi-resolution decomposition of 10 layers, and energy differences of every level between PQD disturbance signal and standard signal as feature vectors;Then, it used PCA to analyze feature vectors and takes the front six dimensions are extracted as the eigenvectors of classification.The method of cross-validation is used for the training set to select the optimal parameters adaptively and constructs the training set model;finally, the testing set is substituted into the training set model for classification.The test results show that this method can realize the classification of PQD, and has high resolution, strong resistance to noise, fast classification speed, and thus is suitable for the classification of PQD.
keywords: power quality wavelet energy difference PCA SVM adaptive
文章编号:20130216 中图分类号: 文献标志码:
基金项目:上海市教育委员会重点学科建设项目(J51301)
作者 | 单位 | |
刘刚 | lifanguang2008@126.com | |
李凡光 |
Author Name | Affiliation | |
LIU Gang | lifanguang2008@126.com | |
LI Fan-guang |
引用文本:
刘刚,李凡光.基于PCA降维和优化核参数SVM的电能质量扰动分类[J].上海电力大学学报,2013,29(2):163-168.
LIU Gang,LI Fan-guang.Classification of Power Quality Disturbances Based on PCA for Reducing the Dimensions and SVM with Optimal[J].Journal of Shanghai University of Electric Power,2013,29(2):163-168.
刘刚,李凡光.基于PCA降维和优化核参数SVM的电能质量扰动分类[J].上海电力大学学报,2013,29(2):163-168.
LIU Gang,LI Fan-guang.Classification of Power Quality Disturbances Based on PCA for Reducing the Dimensions and SVM with Optimal[J].Journal of Shanghai University of Electric Power,2013,29(2):163-168.