###
上海电力大学学报:2014,30(3):203-207,222
本文二维码信息
码上扫一扫!
基于人工神经网络的风电功率预测优化算法
(1.上海电力学院电气工程学院;2.上海电力学院自动化工程学院)
Artificial Intelligence Algorithm and Its Optimization in the Wind Power Forecasting Based on Nerve Network
(1.School of Electric Power Engineering, Shanghai University of Electric Power, Shanghai 200090, China;2.School of Electric Automation Engineering, Shanghai University of Electric Power, Shanghai 200090, China)
摘要
图/表
参考文献
本刊相似文献
All Journals 相似文献
All Journals 引证文献
本文已被:浏览 1329次   下载 482
投稿时间:2013-11-11    
中文摘要: 针对BP神经网络容易陷入过拟合和局部极小值的缺陷,采用殖民竞争全局优化算法,将BP神经网络的权值和阈值作为变量,并将均方差作为目标函数,组成了一种新的ICA-BP神经网络算法.结合风电厂的实际数据在Matlab平台上对该方法进行了验证,并与粒子群算法、遗传算法进行比较,得出该算法可以提高风电功率预测精度的结论.
Abstract:In view of the fact that BP algorithms are fast but they tend to be trapped in local minimums, ICA is employed as a global optimum search algorithm to overcome BP neural network adversities, ANN connection weights are formed as variables of ICA and the Mean Square Error is used as a cost function in ICA, composing the new ICA-BP algorithm. Combined with the actual data of wind power plants on the MATLAB platform to validate the method, and a conclusion is made that this algorithm can improve the precision of wind power forecasting.
文章编号:20140302     中图分类号:    文献标志码:
基金项目:国家自然科学基金(60801056);上海市青年科技启明星计划基金(11QA1402800);上海教育委员会科研创新重点项目(11ZZ170)
引用文本:
朱海婷,杨宁,王博.基于人工神经网络的风电功率预测优化算法[J].上海电力大学学报,2014,30(3):203-207,222.
ZHU Haiting,YANG Ning,WANG Bo.Artificial Intelligence Algorithm and Its Optimization in the Wind Power Forecasting Based on Nerve Network[J].Journal of Shanghai University of Electric Power,2014,30(3):203-207,222.