本文已被:浏览 1531次 下载 1487次
投稿时间:2014-09-24
投稿时间:2014-09-24
中文摘要: 从海上风电机组的故障诊断与状态监测技术出发,对故障进行了统计,给出了状态监测的主要参数,从中选取温度参数作为分析对象.通过温度时序图分析,分为正常运行、故障形成、即将发生故障3种状态进行监测,采用神经网络与遗传算法相结合的方法进行了故障诊断.结果表明,通过温度变化可以预知风电机组即将发生故障,便于及时预警并采取预防措施.
Abstract:Starting from the offshore wind turbine fault diagnosis and condition monitoring technology,statistics of the faults are collected,the main parameters of the state monitoring are given. The temperature parameter is selected as the object of monitoring. Through the temperature timing diagram analysis,temperature monitoring is divided into three states of normal operation,fault formation and upcoming failure. Neural network and genetic algorithm are used for fault diagnosis. The diagnostic results showthat wind turbine upcoming failure can be predicted through temperature changes,which helps to conduct timely warning and preventive measures.
文章编号:20140616 中图分类号: 文献标志码:
基金项目:国家自然科学基金(51177098);上海市科学技术委员会绿色能源并网工程技术研究中心项目(13DZ2251900);上海市科学技术委员会地方能力项目(Z2013062)
作者 | 单位 | |
魏书荣 | 上海电力学院电气工程学院 | wsrmail@163.com |
何之倬 | 上海电力学院电气工程学院 | |
唐征歧 | 上海东海风力发电有限公司 | |
周杰 | 上海电力实业有限公司 |
引用文本:
魏书荣,何之倬,唐征歧,等.海上风电机组的在线监测与故障预警[J].上海电力大学学报,2014,30(6):569-573.
WEI Shurong,HE Zhizhuo,TANG Zhengqi,et al.Online Monitoring and Fault Warning of the Offshore Wind Turbine[J].Journal of Shanghai University of Electric Power,2014,30(6):569-573.
魏书荣,何之倬,唐征歧,等.海上风电机组的在线监测与故障预警[J].上海电力大学学报,2014,30(6):569-573.
WEI Shurong,HE Zhizhuo,TANG Zhengqi,et al.Online Monitoring and Fault Warning of the Offshore Wind Turbine[J].Journal of Shanghai University of Electric Power,2014,30(6):569-573.