###
上海电力大学学报:2014,30(6):574-578
本文二维码信息
码上扫一扫!
基于改进粗糙集理论与概率神经网络的变压器故障诊断研究
(1.上海电力学院电气工程学院;2.核电秦山联营有限公司运行部)
Study on Transformer Fault Dlagnosis Based on Improved Rough Set Theory and Probabilistic Neural Network
(1.School of Electrical Engineering, Shanghai University of Electric Power, Shanghai 200090, China;2.Operation Department, Qinshan Nuclear Power Joint Venture Company, Jiaxing 314300, China)
摘要
图/表
参考文献
本刊相似文献
All Journals 相似文献
All Journals 引证文献
本文已被:浏览 1317次   下载 545
投稿时间:2014-09-24    
中文摘要: 提出了一种基于改进粗糙集理论与概率神经网络的变压器故障综合诊断方法.利用了粗糙集理论的决策表约简技术,去除冗余信息,并引入可辨识矩阵,更加快速地去除故障冗余属性,减小了约简过程的复杂度.将得到的最小决策表作为改进的概率神经网络的训练样本,提高了PNN的训练速度和诊断的准确率.实例证明,该模型不仅能在信息不完备的情况下进行有效诊断,而且可以提高诊断速率及正判率.
Abstract:A synthetic fault diagnosis method based on improved rough set theory and probabilistic neural network for electric power transformer is proposed. The redundancy information is deleted by using decision table reduction technique of RS. The discernibility matrix is introduced into the reduction of decision table,which more quickly removes fault redundant attributes,and reduces complexity reduction process. The training stylebook of PNN is minimal decision table,thus the training speed and the accuracy of diagnosis are effectively improved. The diagnosis examples showthat the model can not only effectively diagnose incomplete information but also improve the diagnosis rate and correct rate.
文章编号:20140617     中图分类号:    文献标志码:
基金项目:
引用文本:
江玉蓉,葛永丰.基于改进粗糙集理论与概率神经网络的变压器故障诊断研究[J].上海电力大学学报,2014,30(6):574-578.
JIANG Yurong,GE Yongfeng.Study on Transformer Fault Dlagnosis Based on Improved Rough Set Theory and Probabilistic Neural Network[J].Journal of Shanghai University of Electric Power,2014,30(6):574-578.