###
上海电力大学学报:2017,33(2):196-200,209
本文二维码信息
码上扫一扫!
基于模糊C均值聚类算法的区域用电特征分析
(上海电力学院 计算机科学与技术学院)
Fuzzy C-means Clustering-based Algorithm for the Analysis of Regional Electric Power Characteristics
(School of Computer Science and Technology, Shanghai University of Electric Power, Shanghai 200090, China)
摘要
图/表
参考文献
本刊相似文献
All Journals 相似文献
All Journals 引证文献
本文已被:浏览 1262次   下载 652
投稿时间:2016-09-08    
中文摘要: 某区域内电力用户的用电行为往往会影响该区域电力公司的负荷调度以及分时电价等重要问题的决策.为使得这些决策更符合该区域的实际情况,必须对该区域的用电特征进行分析.针对这一问题,提出了一种基于聚类算法的区域用电特征分析方法.采用模糊C均值算法并结合K-means算法,按照某区域的电力用户分布情况,将数据样本聚类为居民区电力用户、商业区电力用户和工业区电力用户3个类簇,并结合该地区实际用电情况,对得到的类簇负荷曲线进行了分析,得出了该区域不同类型电力用户的用电特征.
Abstract:The behaviors of power users in some areas tend to affect the power load dispatching, time-sharing electricity price, and some other important problems on decision-making.It is necessary to analyze the regional electric-using characteristics to ensure that this decision is suitable for the local situation.To solve this problem, the analysis method of regional electric-using characteristics on clustering algorithm is put forward.The experiment adopts the fuzzy C-means algorithm and K-means algorithm, and according to the distribution of power users in certain areas, the sample data for residential electricity users, commercial power users and industrial power users are clustered.In connection with the actual electric consumption situation in the region, the load curve is analyzed.The area electricity characteristics and the results of the analysis of different kinds of power users are obtained.
文章编号:20172017     中图分类号:    文献标志码:
基金项目:国家自然科学基金(61472236);上海市科学技术委员会地方能力建设项目(Z2014-076).
引用文本:
雷景生,余修成.基于模糊C均值聚类算法的区域用电特征分析[J].上海电力大学学报,2017,33(2):196-200,209.
LEI Jingsheng,YU Xiucheng.Fuzzy C-means Clustering-based Algorithm for the Analysis of Regional Electric Power Characteristics[J].Journal of Shanghai University of Electric Power,2017,33(2):196-200,209.