###
上海电力大学学报:2019,35(2):181-186
本文二维码信息
码上扫一扫!
基于马尔科夫法和序贯蒙特卡洛抽样的风电场可靠性评估
(上海电力学院 自动化工程学院, 上海 200090)
Wind Farm Reliability Assessment Based on MARKOV and Sequential Monte Carlo Sampling
(School of Automation Engineering, Shanghai University of Electric Power, Shanghai 200090, China)
摘要
图/表
参考文献
本刊相似文献
All Journals 相似文献
All Journals 引证文献
本文已被:浏览 2031次   下载 654
投稿时间:2019-01-05    
中文摘要: 提出了运用马尔科夫法和序贯蒙特卡洛抽样的风电场可靠性模型并进行了并网可靠性评估。通过对风电场历史运行数据的统计,利用马尔科夫法得到风电机组有功输出状态之间的转移率,采用便于工程实现的正常、降额及故障3个状态作为风机故障模型并通过马尔科夫法计算得到状态概率及持续时间。利用序贯蒙特卡洛法对风机状态及其持续时间进行多重抽样,所提出的模型经过IEEE-RTS79可靠性测试系统进行综合模拟,并分析了不同风电渗透率下系统可靠性水平。实验结果表明所构建的模型能反映任意时间段的风机出力及可靠性水平。
Abstract:A wind farm reliability model using Markov chain and sequential Monte Carlo multistage is proposed and a grid-connected reliability evaluation is carried out. Through the statistics of the historical operation data of the wind farm, the transfer rate between the active output states of the wind turbines is obtained with the Markov method. Then, the three states of normal, derating and fault that are easy to implement are proposed as the wind turbine fault model and the state probability and duration are obtained with the Markov method. The Sequential Monte Carlo method is used to multiply the wind turbine state and its duration. The proposed model is comprehensively simulated by the IEEE-RTS79 reliability test system, and the system reliability level under different wind power penetration rates is analyzed. The experimental results show that the constructed model can reflect the wind turbine output and reliability level at any time.
文章编号:20192016     中图分类号:TM614    文献标志码:
基金项目:国家自然科学基金(51507098);上海市电站自动化技术重点实验室项目(13DZ2273800)。
引用文本:
郑小霞,缪唯杰.基于马尔科夫法和序贯蒙特卡洛抽样的风电场可靠性评估[J].上海电力大学学报,2019,35(2):181-186.
ZHENG Xiaoxia,MIAO Weijie.Wind Farm Reliability Assessment Based on MARKOV and Sequential Monte Carlo Sampling[J].Journal of Shanghai University of Electric Power,2019,35(2):181-186.