###
上海电力大学学报:2019,35(3):215-220
本文二维码信息
码上扫一扫!
灵活性深度调峰下锅炉NOx排放的神经网络方法预报
(1.国网新疆电力有限公司电力科学研究院;2.华电新疆发电有限公司昌吉热电厂)
Neural Network Prediction of NOx Emission Characteristics of Boiler under Flexibility and Deep Peak Shaving
(1.State Grid Xinjiang Electric Power Research Institute, Urumqi 830001, China;2.Changji Thermoelectricity Huadian Xinjiang Power Co., Ltd, Changji 831100, China)
摘要
图/表
参考文献
本刊相似文献
All Journals 相似文献
All Journals 引证文献
本文已被:浏览 1074次   下载 437
投稿时间:2018-12-10    
中文摘要: 利用MATLAB软件中自带的神经网络算法模块对经典文献所载数据和方法进行了校核。在该方法的基础上,将某330 MW机组在深度调峰期间低负荷下的运行数据作为已知数据,就地实测的选择性催化还原技术(SCR)入口NOx排放值作为输出值,采用经典的Levenberg-Marquardt训练算法,建立了神经网络训练模型。训练结果表明,输出值和目标值的拟合R值接近0.98,MATLAB软件自带的神经网络算法可以预报SCR入口NOx的排放值,实现了在深度调峰低负荷运行期间达到降低试验工作量、减少试验成本的目的。
中文关键词: 深度调峰  锅炉  神经网络
Abstract:The data and methods of the classical literature are checked by the neural network algorithm module in Matlab.On the basis of this method,the operation data of a 330 MW unit under the low load during the depth peak adjustment is taken as the known data,the NOx emission values are measured at selective catalytic reduction(SCR) entrance,and the classical Levenberg-Marquard is used.The neural network training model is established.The results show that the R value of the output value and the target value fitting is close to 0.98.The neural network algorithm in Matlab can predict the NOx emission value at the selective catalytic reduction(SCR) entrance,and realize the purpose of reducing the test workload and the test cost during the low load operation of the depth peak regulation.
文章编号:20193004     中图分类号:TM621.2    文献标志码:
基金项目:国网新疆电力有限公司科技项目(大型火力发电机组深度调峰技术研究,5230DK17000R)。
引用文本:
景雪晖,张涛,周曙明,等.灵活性深度调峰下锅炉NOx排放的神经网络方法预报[J].上海电力大学学报,2019,35(3):215-220.
JING Xuehui,ZHANG Tao,ZHOU Shuming,et al.Neural Network Prediction of NOx Emission Characteristics of Boiler under Flexibility and Deep Peak Shaving[J].Journal of Shanghai University of Electric Power,2019,35(3):215-220.