###
上海电力大学学报:2019,35(4):399-403
←前一篇   |   后一篇→
本文二维码信息
码上扫一扫!
基于强化学习的云计算资源调度策略研究
(国网上海电力公司信息通信公司)
Research on Cloud Computing Resource Scheduling Strategy Based on Reinforcement Learning
(State Grid Shanghai Municipal Electric Power Company, Shanghai 200030, China)
摘要
图/表
参考文献
本刊相似文献
All Journals 相似文献
All Journals 引证文献
本文已被:浏览 2321次   下载 840
投稿时间:2018-12-17    
中文摘要: 提出了一种基于强化学习的云计算虚拟机资源调度问题的解决方案和策略。构建了虚拟机的动态负载调度模型,将虚拟机资源调度问题描述为马尔可夫决策过程。根据虚拟机系统调度模型构建状态空间和虚拟机数量增减空间,并设计了动作的奖励函数。采用Q值强化学习机制,实现了虚拟机资源调度策略。在云平台的虚拟机模型中,对按需增减虚拟机数量和虚拟机动态迁移两种场景下的学习调度策略进行了仿真,验证了该方法的有效性。
中文关键词: 云计算  虚拟机  强化学习  控制策略
Abstract:A solution to cloud computing resource scheduling problem based on reinforcement learning is proposed.The dynamic load scheduling model of the virtual machine is constructed,and the virtual machine resource scheduling problem is described as the Markov decision process.According to the virtual machine system scheduling model,the state space and the number of virtual machines are increased or decreased,and the reward function of the action is designed.The Q-valued reinforcement learning mechanism is used to implement the virtual machine resource scheduling strategy.Finally,in the virtual machine model of the cloud platform,the performance of the learning and scheduling strategy is enhanced under the scenarios of increasing or decreasing the number of virtual machines and virtual machine dynamic migration.The effectiveness of the method is verified.
文章编号:20194018     中图分类号:TP399    文献标志码:
基金项目:
引用文本:
李天宇.基于强化学习的云计算资源调度策略研究[J].上海电力大学学报,2019,35(4):399-403.
LI Tianyu.Research on Cloud Computing Resource Scheduling Strategy Based on Reinforcement Learning[J].Journal of Shanghai University of Electric Power,2019,35(4):399-403.