###
上海电力大学学报:2020,36(5):441-444
本文二维码信息
码上扫一扫!
基于极端学习机的NOx预测模型样本特性研究
(上海电力大学 能源与机械工程学院)
Study on the Samples Characteristic of NOx Predicton Model based on Extreme Learning Machine
(School of Energy and Mechanical Engineering, Shanghai University of Electric Power, Shanghai 200090, China)
摘要
图/表
参考文献
本刊相似文献
All Journals 相似文献
All Journals 引证文献
本文已被:浏览 975次   下载 432
投稿时间:2020-04-18    
中文摘要: 针对某燃煤锅炉进行了样本特性实验,选取测试集均方根误差(RMSE)作为性能指标,基于不同测试样本数目分别建立电厂NOx排放的极端学习机预测模型。经过31次实验后的结果表明,随着测试样本数的增加,预测样本RMSE呈增长的趋势。当测试样本数为2时,极端学习机(ELM)可以建立相对准确的预测模型。
中文关键词: 极端学习机  样本数目  锅炉  神经网络
Abstract:Under the premise of a certain total sample,the effect of the number of test samples on the prediction performance of NOx is studied.A sample characteristic experiment is conducted for a coal-fired boiler.The mean square error of the test set is selected as the performance index.Based on the number of different test samples,an extreme learning machine prediction model of NOx emissions from the power plant is established.Each experiment is conducted 31 times to analyze sample characteristics.The experimental results show that as the number of test samples increases,the prediction samples RMSE increases.When the number of test samples is 2,ELM can build a relatively accurate prediction model.
文章编号:20205005     中图分类号:TK16    文献标志码:
基金项目:国家重点研发计划(2018YFB0604204)。
引用文本:
申志文,李庆伟.基于极端学习机的NOx预测模型样本特性研究[J].上海电力大学学报,2020,36(5):441-444.
SHEN Zhiwen,LI Qingwei.Study on the Samples Characteristic of NOx Predicton Model based on Extreme Learning Machine[J].Journal of Shanghai University of Electric Power,2020,36(5):441-444.