###
上海电力大学学报:2020,36(5):445-450
本文二维码信息
码上扫一扫!
基于极端随机树的火电厂再热器故障预警算法研究
(1.华能国际电力股份有限公司玉环电厂;2.国网湖南电力有限公司郴州供电分公司;3.上海电力大学)
Research on Fault Early Warning Algorithm of Reheater in Thermal Power Plant Based on Extreme Random Tree
(1.Yuhuan Power Plant, Huaneng International Power Co., Ltd., Taizhou, Zhejiang 317604, China;2.Chenzhou Power Supply Branch, State Grid Hunan Electric Power Co., Ltd., Chenzhou, Hunan 423000, China;3.Shanghai University of Electric Power, Shanghai 200090, China)
摘要
图/表
参考文献
本刊相似文献
All Journals 相似文献
All Journals 引证文献
本文已被:浏览 1014次   下载 586
投稿时间:2020-05-18    
中文摘要: 针对火电厂锅炉再热器欠温问题存在的故障隐患,研究了随机森林、极端随机树和梯度提升决策树3种集成学习算法对再热蒸汽温度的预测效果。再通过预测值与真实值之间存在的残差,可以在一定程度上反映故障隐患信息。采用滑动窗口法精确计算预警阈值,分别对3种算法的预警效果进行了对比分析,确定了极端随机树与滑动窗口法相结合的预警模型初始报警时刻最早,预测效果最为准确。
Abstract:Aiming at the hidden troubles of under-temperature problems of boiler reheaters in thermal power plants,the prediction effects of three integrated learning algorithms,extreme random tree,gradient boost and random forest,on the temperature of reheated steam were studied.The residual between the predicted value and the real value reflects the hidden danger information to a certain extent;at the same time,the sliding window method is used to accurately calculate the warning threshold,and the early warning effects of the three algorithms are compared and analyzed,and the extreme random tree and sliding window are determined.
文章编号:20205006     中图分类号:TK228    文献标志码:
基金项目:中国华能集团有限公司2019年度科技项目(K-522019007)。
引用文本:
傅望安,张泽发,黄伟.基于极端随机树的火电厂再热器故障预警算法研究[J].上海电力大学学报,2020,36(5):445-450.
FU Wang,ZHANG Zefa,HUANG Wei.Research on Fault Early Warning Algorithm of Reheater in Thermal Power Plant Based on Extreme Random Tree[J].Journal of Shanghai University of Electric Power,2020,36(5):445-450.