本文已被:浏览 1468次 下载 488次
投稿时间:2020-04-08
投稿时间:2020-04-08
中文摘要: 双JPEG图像压缩检测是图像盲取证中的研究热点之一。针对JPEG图像压缩检测盲取证问题,提出了一种在双JPEG格式下基于卷积神经网络(CNN)的压缩检测算法。将图像数据集中的样本以不同的质量因子进行单JPEG压缩和双JPEG压缩,把检测图像的DCT系数直方图作为CNN网络的输入进行特征提取,输出层是样本类别的概率分类。实验结果表明,样本尺寸越大,篡改后的质量因子越大,分类器检测正确率越高;与现有算法相比,提出的算法检测正确率最高提高了1.3%,证明具有良好的双JPEG图像压缩性能检测能力。
Abstract:Double JPEG compression detection is one of the research hotspots in blind forensics.To solve the problem of blind forensics a compression detection algorithm based on convolutional neural network (CNN) in double JPEG format is proposed.The samples in the image data set are compressed by single JPEG and double JPEG with different quality factors,and the DCT coefficient histogram of the detected image is taken as the input of CNN network for feature extraction.The output layer is the probability classification of the sample category.The experimental results show that the larger the sample size is,the larger the quality factor is,and the higher the detection accuracy is.Compared with present algorithms,this algorithm is of the highest accuracy,a rise of 1.3%,and has good detection ability of double JPEG compression performance.
文章编号:20205017 中图分类号:TP391 文献标志码:
基金项目:国家自然科学基金(61602295);上海市自然科学基金(16ZR1413100)。
作者 | 单位 | |
楚雪玲 | 上海电力大学 计算机科学与技术学院 | |
魏为民 | 上海电力大学 计算机科学与技术学院 | wwm@shiep.edu.cn |
华秀茹 | 上海电力大学 计算机科学与技术学院 | |
李思纤 | 上海电力大学 计算机科学与技术学院 | |
栗风永 | 上海电力大学 计算机科学与技术学院 |
引用文本:
楚雪玲,魏为民,华秀茹,等.一种基于深度学习的双JPEG图像压缩检测算法[J].上海电力大学学报,2020,36(5):505-510.
CHU Xueling,WEI Weimin,HUA Xiuru,et al.A Double Compression Detection Algorithm for JPEG Image Based on Deep Learning[J].Journal of Shanghai University of Electric Power,2020,36(5):505-510.
楚雪玲,魏为民,华秀茹,等.一种基于深度学习的双JPEG图像压缩检测算法[J].上海电力大学学报,2020,36(5):505-510.
CHU Xueling,WEI Weimin,HUA Xiuru,et al.A Double Compression Detection Algorithm for JPEG Image Based on Deep Learning[J].Journal of Shanghai University of Electric Power,2020,36(5):505-510.