本文已被:浏览 1264次 下载 382次
投稿时间:2019-04-02
投稿时间:2019-04-02
中文摘要: 火电厂烟气中SO2对环境的污染比较严重,且当前电厂脱硫控制环节的自动化程度和控制精度都比较低,因此为了控制SO2排放,建立良好的控制策略至关重要。在某电厂湿法烟气脱硫系统的辨识结果基础上,分别以浆液pH值和出口SO2浓度为研究对象,建立了对应的前馈-反馈复合控制系统模型,给出了基于多容惯性过程(Multiple Capacity Process,MCP)标准传递函数模型的PID控制器参数整定方法。仿真结果验证了MCP-PID整定方法的适用性和准确性。该方法为电厂脱硫控制环节优化提供了数学模型基础,为多变量连续系统控制策略选择提供了新的思路。
Abstract:Due to the serious environmental pollution caused by SO2 in the flue gas of thermal power plants and the low degree of automation and control precision of the current desulfurization control link of power plants,in order to optimize the desulfurization control link of power plants,the establishment of accurate system model is an important prerequisite for the control of SO2 emissions.In this paper,based on the identification results of a wet flue gas desulfurization system in a power plant,a feedforward and feedback compound control system model corresponding to the slurry pH value and outlet SO2 concentration is established,and a PID controller parameter tuning method based on Multiple Capacity Process(MCP) standard transfer function model is presented.The simulation results verify the applicability and accuracy of the MCP-PID tuning method.This method provides the mathematical model basis for the desulfurization control link optimization of power plant and provides a new idea for the control strategy selection of multivariable continuous system.
文章编号:20206007 中图分类号:X701.3 文献标志码:
基金项目:
作者 | 单位 | |
孙智滨 | 上海电力大学 自动化工程学院 | |
康英伟 | 上海电力大学 自动化工程学院 | controlkyw@126.com |
常俊 | 上海电力大学 自动化工程学院 | |
杨平 | 上海电力大学 自动化工程学院 |
引用文本:
孙智滨,康英伟,常俊,等.大型燃煤火电机组湿法脱硫系统控制研究[J].上海电力大学学报,2020,36(6):553-561.
SUN Zhibin,KANG Yingwei,CHANG Jun,et al.Study on the Control of Wet Desulphurization System for Large Coal-fired Power Plants[J].Journal of Shanghai University of Electric Power,2020,36(6):553-561.
孙智滨,康英伟,常俊,等.大型燃煤火电机组湿法脱硫系统控制研究[J].上海电力大学学报,2020,36(6):553-561.
SUN Zhibin,KANG Yingwei,CHANG Jun,et al.Study on the Control of Wet Desulphurization System for Large Coal-fired Power Plants[J].Journal of Shanghai University of Electric Power,2020,36(6):553-561.