###
上海电力大学学报:2021,37(2):127-132,137
本文二维码信息
码上扫一扫!
基于FTA-BN模型的煤粉锅炉受热面故障风险研究
(1.上海电力大学 自动化工程学院;2.华电电力科学研究院有限公司 电力工业产品质量标准研究所)
Study on Failure Risk of Coal Pulverized Coal Boiler Heating Surface Based on FTA-BN Model
(1.School of Automation Engineering, Shanghai University of Electric Power, Shanghai 200090;2.Electric Power Industry Product Quality Standard Research Institute Co., Ltd., Huadian Electric Power Research Institute Co., Ltd., Hangzhou, Zhejiang 310013, China)
摘要
图/表
参考文献
本刊相似文献
All Journals 相似文献
All Journals 引证文献
本文已被:浏览 822次   下载 583
投稿时间:2020-08-17    
中文摘要: 煤粉锅炉受热面在故障演化过程中具有不确定性,难以准确地评估故障风险。针对上述问题,采用了一种基于故障树分析(FTA)与贝叶斯网络(BN)的方法研究煤粉锅炉受热面故障风险。此方法结合了故障树易于梳理事件之间因果关系和贝叶斯网络不确定性分析的优势。首先,建立煤粉锅炉受热面4层故障树模型;然后,映射成BN模型并进行不确定性修正,通过与某电厂煤粉锅炉故障数据对比,验证所提方法可以提高故障风险评估的准确性;最后,根据BN的反向诊断推理,找出故障风险关键因素,提升锅炉受热面的安全性。
Abstract:The heating surface of pulverized coal boiler is uncertain in the process of fault evolution, so it is difficult to accurately evaluate the fault risk.Aiming at the above problems, a Fault Tree Analysis (FTA) and Bayesian Network (BN) method is adopted to study the fault risk of the heating surface of pulverized coal boiler.This method combines the advantages of Bayesian network uncertainty analysis with fault tree easy to tease out causality between events.Firstly, a four-layer fault tree model for the heating surface of pulverized coal boiler is established.Then, the proposed method is mapped to BN model and uncertainty correction is carried out.The proposed method can improve the accuracy of fault risk assessment by comparing with the fault data of a coal-fired boiler in a power plant.Finally, according to the reverse diagnosis reasoning of BN, the safety improvement of boiler heating surface is proposed.
文章编号:20212005     中图分类号:TM621    文献标志码:
基金项目:
引用文本:
张悦,崔承刚,周崇波,等.基于FTA-BN模型的煤粉锅炉受热面故障风险研究[J].上海电力大学学报,2021,37(2):127-132,137.
ZHANG Yue,CUI Chenggang,ZHOU Chongbo,et al.Study on Failure Risk of Coal Pulverized Coal Boiler Heating Surface Based on FTA-BN Model[J].Journal of Shanghai University of Electric Power,2021,37(2):127-132,137.