本文已被:浏览 730次 下载 312次
投稿时间:2020-02-28
投稿时间:2020-02-28
中文摘要: 在工人伤亡事故中头部受伤占伤亡事故的绝大部分。针对工人安全帽检测传统方法与检测场景关联性低、实用性差等问题,提出了一种采用面部特征与神经网络相结合的算法。该算法以多任务级联卷积神经网络(MTCNN)提取脸部特征与VGG深度卷积神经网络相结合进行安全帽检测,并且检测模型占用内存小、识别准确性高、算法实用性强,能有效监督安全帽佩戴情况,给工人施工提供安全保障。
Abstract:In worker casualties, head injuries account for the vast majority of casualties.Aiming at the problems of worker safety helmets with low correlation between traditional methods and detection scenarios and poor practicability, this paper proposes an algorithm that combines facial features and neural networks.The algorithm uses MTCNN to extract facial features and VGG convolutional neural networks to detect helmets.The detecting model is of small memory consumption high detection accuracy, and strong algorithm practicability.It can effectively supervise the wearing of helmets and provide workers with construction security guarantee.
文章编号:20213018 中图分类号:TP311.1;TM08 文献标志码:
基金项目:
引用文本:
王成龙,赵倩,郭彤.基于面部特征的深度学习安全帽检测[J].上海电力大学学报,2021,37(3):303-307.
WANG Chenglong,ZHAO Qian,GUO Tong.Facial Feature-based Deep Learning Helmet Detection[J].Journal of Shanghai University of Electric Power,2021,37(3):303-307.
王成龙,赵倩,郭彤.基于面部特征的深度学习安全帽检测[J].上海电力大学学报,2021,37(3):303-307.
WANG Chenglong,ZHAO Qian,GUO Tong.Facial Feature-based Deep Learning Helmet Detection[J].Journal of Shanghai University of Electric Power,2021,37(3):303-307.