本文已被:浏览 800次 下载 311次
投稿时间:2022-03-08
投稿时间:2022-03-08
中文摘要: 针对目前预测算法的预测时间短和预警不及时等问题,采用极限学习机(ELM)算法,构建了时序预测模型,并通过最小二乘法拟合构建预测值斜率趋势,采用高斯混合聚类得到了动态安全趋势阈值,再结合预测斜率趋势和动态安全趋势阈值实现了斜率趋势预警。结果表明,相比于门控循环单元结构(GRU)神经网络等建模方法,ELM算法具有更好的预警能力,并且斜率趋势预警能够较早发现运行时异常变化,实现准确且及时的预警。
Abstract:This paper aims at the problems of short prediction time and untimely early warning of current prediction algorithms.By using Extreme Learning Machine (ELM) algorithm,it builds a time-series forecasting model and constructs a forecasted value slope trend by least squares fit,using Gaussian mixture clustering to obtain dynamic security trend thresholds,combining predicted slope trend and dynamic safety trend threshold to realize slope trend early warning.The results show that the ELM algorithm has better early warning ability than modeling methods such as GRU neural network,and the slope trend early warning can detect abnormal changes in runtime earlier,and achieve accurate and timely early warning.
keywords: extreme learning machine prediction Gaussian mixture clustering dynamic security trend thresholds slope trend warning
文章编号:20223013 中图分类号:TK228 文献标志码:
基金项目:
作者 | 单位 | |
蒋斌 | 华能(浙江)能源开发有限公司玉环分公司 | |
尤慧飞 | 华能(浙江)能源开发有限公司玉环分公司 | |
王俊 | 华能(浙江)能源开发有限公司玉环分公司 | |
张文博 | 华能(浙江)能源开发有限公司玉环分公司 | |
张俊 | 上海电力大学 | 757035649@qq.com |
引用文本:
蒋斌,尤慧飞,王俊,等.基于时序大数据机器学习的状态趋势预警研究[J].上海电力大学学报,2022,38(3):280-286.
JIANG Bin,YOU Huifei,WANG Jun,et al.State Trend Early Warning Based on Time Series Big Data Machine Learning[J].Journal of Shanghai University of Electric Power,2022,38(3):280-286.
蒋斌,尤慧飞,王俊,等.基于时序大数据机器学习的状态趋势预警研究[J].上海电力大学学报,2022,38(3):280-286.
JIANG Bin,YOU Huifei,WANG Jun,et al.State Trend Early Warning Based on Time Series Big Data Machine Learning[J].Journal of Shanghai University of Electric Power,2022,38(3):280-286.