###
上海电力大学学报:2022,38(5):518-522
←前一篇   |   后一篇→
本文二维码信息
码上扫一扫!
电力变压器故障智能化诊断技术综述
(1.贵州电网有限责任公司 信息中心;2.上海电力大学 能源与机械工程学院)
Review and Analysis of Intelligent Diagnosis Technology for Transformer Faults
(1.Information Center, Guizhou Power Grid Co., Ltd., Guiyang, Guizhou 550003, China;2.School of Energy and Mechanical Engineering, Shanghai University of Electric Power, Shanghai 200090, China)
摘要
图/表
参考文献
本刊相似文献
All Journals 相似文献
All Journals 引证文献
本文已被:浏览 3900次   下载 1647
投稿时间:2022-04-14    
中文摘要: 变压器是电力系统的主要设备之一,其故障的提前诊断极其重要。总结并系统剖析了国内外各种传统及现有的变压器故障诊断方式,详细列举了基于油中溶解气体分析技术或电力设备的智能化故障诊断技术的最新进展,阐述了各类深度学习算法在变压器故障诊断中的应用,如深度神经网络、稀疏受限玻尔兹曼机、深度置信网络等,并将各种诊断技术的最终效果进行了对比。
Abstract:As one of the main equipment in the power system,it is extremely important to diagnose transformer faults in advance.However,it is difficult to establish an accurate and perfect condition assessment model for power transformers by traditional technology,and then artificial intelligence is gradually coming into the public view as a new idea and method.This paper summarizes and systematically analyzes various traditional and existing transformer fault diagnosis methods at home and abroad,and lists in detail the latest advances in intelligent fault diagnosis technology based on dissolved gas analysis technology in oil or inspection images of power equipment.Various deep learning algorithms applied to transformer fault diagnosis are studied,such as deep neural network,sparse restricted Boltzmann machine,and deep confidence.The final results of various diagnostic techniques are compared.
文章编号:20225018     中图分类号:TP3    文献标志码:
基金项目:
引用文本:
王杰峰,李洵,舒彧,等.电力变压器故障智能化诊断技术综述[J].上海电力大学学报,2022,38(5):518-522.
WANG Jiefeng,LI Xun,SHU Yu,et al.Review and Analysis of Intelligent Diagnosis Technology for Transformer Faults[J].Journal of Shanghai University of Electric Power,2022,38(5):518-522.