###
上海电力大学学报:2023,39(2):149-157
本文二维码信息
码上扫一扫!
基于LSTM分位数回归的零碳能源系统不确定性规划方法研究
(1.上海电力大学 能源与机械工程学院;2.国网上海市电力公司 浦东供电公司)
Uncertainty Plan of a Zero-carbon Energy System Based on LSTM Quantile Regression
(1.School of Energy and Mechanical Engineering, Shanghai University of Electric Power, Shanghai 200090, China;2.Pudong Power Supply Company, State Gird Shanghai Municipal Electric Power Compary, Shanghai 200120, China)
摘要
图/表
参考文献
本刊相似文献
All Journals 相似文献
All Journals 引证文献
本文已被:浏览 618次   下载 261
投稿时间:2022-04-02    
中文摘要: 零碳能源系统是建设清洁低碳能源体系、促进碳中和目标达成的有效途径。但风、光等可再生能源发电的间歇性和波动性给零碳能源系统的合理规划与科学配置带来巨大挑战。基于此,提出了基于长短期记忆网络(LSTM)分位数回归的零碳能源系统不确定性规划方法。首先,构建了零碳能源系统的物理结构,并对系统内典型设备进行建模;其次,基于区间数理论思想,构建了基于LSTM分位数回归的光伏发电区间预测模型;然后,以系统年总经济成本最小为目标函数,构建了可实现设备配置与运行策略协同优化的混合整数线性规划模型;最后,通过典型算例分析,验证了所提模型应对零碳能源系统不确定性规划的可行性。
Abstract:Zero-carbon energy system is an effective way to promote the construction of clean and low-carbon energy system and realize carbon neutralization.However, the intermittence and volatility of wind, solar and other renewable energy power generation have brought great challenges to the rational planning and scientific allocation of zero-carbon energy system.In this paper, an uncertainty programming method for zero-carbon energy system based on LSTM quantile regression is proposed.Firstly, the physical structure of the zero-carbon energy system is constructed, and the typical equipment in the system is modeled.Then, based on the interval number theory, the interval prediction model of photovoltaic power generation based on LSTM quantile regression is constructed.Taking the minimum annual total cost as the objective function, the mixed integer linear programming model which can optimize the equipment configuration and operation schedule is constructed.Finally, through the numerical study, the correctness and feasibility of the proposed model is verified.
文章编号:20232009     中图分类号:TK01+9    文献标志码:
基金项目:国家电网有限公司科技项目(5100-202117568A-0-5-SF)。
引用文本:
任洪波,吴琼,王相宇,等.基于LSTM分位数回归的零碳能源系统不确定性规划方法研究[J].上海电力大学学报,2023,39(2):149-157.
REN Hongbo,WU Qiong,WANG Xiangyu,et al.Uncertainty Plan of a Zero-carbon Energy System Based on LSTM Quantile Regression[J].Journal of Shanghai University of Electric Power,2023,39(2):149-157.